
DevOps
Maturity
Check

 This document is licensed under a

Creative Commons Attribution 4.0

International license.

In
tr

od
uc

tio
n

What is the DevOps Maturity Check?

The DevOps Maturity Check is based on a self-

assessment of the team. The purpose is to show

areas of improvement in the process and with

that to give the team the possibility to correct

and improve. For example if the DevOps Maturity

Check shows that the test automation is too low

the team can set a specific and measurable goal

to improve that (e.g. xy % of all unit-test cases

can be run fully automated). The DevOps Maturi-

ty Check does not deliver objectively measurable

and comparable results. It is not made for com-

paring teams or to set quantitative goals.

Who is the DevOps Maturity Check for?

The model is designed for all teams with an agile

or DevOps working model. This is independent

from their organisation affiliation, size, or their

maturity goals.

Practice has shown that the DevOps Maturity

Check helped not only experienced developer

teams but also non-technical consulting teams.

The DevOps Maturity Check is a tool that helps
teams identify their development potentials and
increase their DevOps maturity. It is completed
by the entire team. By team we mean the people
and their roles. Whether it is a virtual
or organizational team does not matter.

DevOps
Maturity Check

DevOps at Swisscom

The maturity check reflects our
understanding of DevOps and
agility. Swisscom has chosen a holistic
approach from the very beginning.
In addition to the obvious technical
capabilities, the organizational form,
processes and above all the culture
have a significant influence on the
success of DevOps.

1 DevOps: The IBM approach - Continuous delivery of software-driven innova-

tion (especially page 6), URL: developer.ibm.com/community

Technical Capabilities - The Reference Model

The IBM reference model „DevOps: The IBM

approach - Continuous delivery of software-dri-

ven innovation“ provides a good overview of the

required technical skills.1

Swisscom relies on an adapted version of the

IBM reference model. The company uses it as

a holistic system that covers not only develop-

ment, but all relevant skills along the entire value

stream. The Swisscom model describes skills that

are relevant for a DevOps operation, however, it

is not a flow chart.

Collaborative Development:

This term describes the ability to continuously

generate value in short iterations and interdi-

sciplinary teams consisting of representatives

from business, development, security, testing

and operations. This requires that code is conti-

nuously fed into the code repository - in the best

case several times a day. Everything is considered

code - this includes not only the actual source

code, but also infrastructure, deployment scripts,

monitoring, test data and more.

Continuous Testing:

This includes the ability to test the code in a

reproducible manner and repeatedly. Automatic

tests allow to examine it in many ways imme-

diately after checking it into the repository. This

allows early and continuous testing instead of

at the end of a process chain, shortly before the

introduction into production. This makes testing

part of the overall process. This in turn improves

cost efficiency, since errors can be eliminated

early in the cycle and thus at a lower cost.

Continuous Release & Deployment:

This refers to the ability to automatically execute

a build and deliver it to any environment. This

is necessary to realize the full potential of auto-

mated testing. Code check-in in the repository

allows a number of automated processes to be

performed, from build to test to deployment.

This significantly reduces manual activities.

Continuous Monitoring:

This involves monitoring the entire system on

all platforms at all times. This makes it possible

to see immediately after the installation of a

feature whether it affects the performance of

the entire system. This early feedback helps to

further improve quality.

Continuous Customer Feedback and Optimiza-

tion: This refers to the ability to continuously

improve software based on measurements and

feedback from both the customer and the com-

pany. Customer behavior is deliberately analyzed

and various channels are used to obtain early

and comprehensive feedback.

Continuous Business Planning:

This refers to the ability to react quickly to cus-

tomer needs and to continuously incorporate

appropriate feedback. The focus is always on

customer needs and defines the product.

DevOps
Understanding
at Swisscom

Collaborativ
Development

Continuous
Testing

ContinuousRelease
& Deployment

Continuous
Monitoring

Continuous
Customer Feedback

& Optimization

Continuous
Business Planning

InterdiciplinaryTeam

Organization

Swisscom relies on interdisciplinary, fully dedi-

cated, autonomous teams that communicate

with each other in a self-organized manner and

at eye level. The ideal team size has proven to

be 7 - 10 people who work together as stably as

possible over a long period of time, thus deve-

loping a common learning culture and being as

self-organized as possible. Project teams that

were formed at the beginning of the project and

dissolved again at the end have been replaced by

standing product teams. In this way, the person

doesn‘t goes to work, but the work comes into

the team.

Processes

A framework like Scrum, Kanban or the Scaled

Agile Framework © is always just a means to

achieve the goals. These frameworks must never

be an end in themselves. That is why we have

consciously decided in the Maturity Check not to

check the framework‘s maturity, but rather the

underlying values and principles that we consi-

der to be much more important

Individual Team
Lean Agile
LeadershipIndividual Team

Lean Agile
LeadershipIndividual Team
Lean Agile
Leadership

Culture
Working in an agile environment requires diffe-

rent behaviors on different levels. At the indivi-

dual level; more personal responsibility, initiative

and open feedback behavior are desired. The

team should take joint responsibility, a common

learning culture should be promoted and high

quality services should be provided. And at the

leadership level, the team should be granted

openness, trust and the greatest possible auto-

nomy. We have summarized the corresponding

expectations in a Collaboration Charter, which is

based on the corporate values.

I continue do develop as my

own brand and am open to

new tasks. I have professio-

nal pride. I take care of my

own well-being, keep my

promises, and take respon-

sibility for my results. I give

constructive criticism. I strive

for continuous improvement

and support my team and

the company. I am recepti-

ve to change and support

my team and the company

in continuing to respond to

customer needs. I deliver

cost-efficient, reusable, secu-

re and straightforward solu-

tions. I do the right thing and

take action if I think my lea-

ders or colleagues are in the

wrong.

We create a framework that

allows us to work quickly and

independently, and support

interdisciplinary collabora-

tion. Together, we keep our

promises and take responsi-

bility for our team results. We

are proud of our built-in qua-

lity and celebrate successes.

We practice a no blame cul-

ture, which encourages open

and honest feedback. We tre-

at one another with respect

and support everyone’s right

to a healthy work-life balan-

ce. Mistakes are part of our

shared learning process. We

resolve problems for the long

term. We abide by the team

and company rules and regu-

lations. We take full responsi-

bility over the entire life cycle

of our products and services.

At Swisscom, everyone leads.

As a lean agile leader, I de-

monstrate entrepreneurial

spirit and am a trainer of the

organisations. I create an agi-

le environment in which peo-

ple are able to do great work,

and facilitate autonomy whi-

le also giving clear direction.

I keep our promises and take

responsibility for our team

results. I believe in the team

and trust that it has the skills

to develop and deliver great

products. I keep rules and re-

gulations to a minimum and

demand compliance. I provi-

de open, timely information

about current processes and

therefore lead by transparen-

cy instead of control.

Self Assessment

The team should judge itself.
The statements in the Maturity Check help
the team to convey our DevOps understan-
ding. They are discussed, reflected and asses-
sed together in the team.

Of course, self-evaluations are always subjec-
tive and consequently never comparable.
Swisscom‘s Maturity Check does not serve
to compare teams and is not used for this
purpose.

It‘s about action

An important element of the Maturity Check
are the measures: What actions do we as a
team derive from the check and by when do
we want to achieve them?
A maturity check without consequences is a
waste of time.

Collaboration

The DevOps Maturity Check can be used to
collaborate with other teams. It is meant to
encourage teams to reach out to each other,
exchanging experiences and practices. This
way, it provides an opportunity to learn from
and grow with each other.

Two Dimensions

The Maturity Check consists of two inde-
pendent parts: Team Fitness and Applica-
tion Fitness. The Team Fitness deals with its
collaboration, working methods and the use
of agile principles. The Application Fitness
checks how well the DevOps Capability is
implemented.

DevOps
Maturity
Check
Principles

The DevOps Maturity Check provides a set of

statements that the team either agrees with

or doesn‘t. They are assessed and discussed

in the team. A retrospective is a good space

to do this.

To help assess where you stand there are

some examples of what needs to be fulfilled

in order to achieve a rating of 5.

The assessment ranges from 0 to 5, 0 being

“not at all” and 5 being “very accurate”.

The PDF is interactive, so you can rate the

question here directly.

We live the principles in the „Team“ part of the

Collaboration Charter.

(see chapter „DevOps Understanding at

Swisscom“)

	○ We regularly address the subject of

charter as a team. We deal with the

content.

	○ We continuously improve ourselves.

	○ We consistently live the behavior pat-

terns described and examples of this are

visible in everyday life:

	○ „We create the prerequisites for working

speedly and independently and foster

interdisciplinary collaboration.“

	○ „Together, we deliver on our promises

and assume joint ownership for our

team results.“

	○ „We are proud of our built-in quality and

celebrate success.“

	○ „We live a “no blaming” culture that en-

courages open feedback.“

	○ „We treat each other with respect and we

support everyone‘s work-life balance.“

	○ „Mistakes are part of our collaborative

learning process.“

	○ „We remedy problems sustainably.“

	○ „We adhere to the rules of the team and

company.“

	○ „We take full lifecycle responsibility for

our products and services“

How do I use the DevOps Maturity Check?

Rating

0 	 1	 2	 3	 4	 5

Team
Fitness
The first part of the DevOps Maturity Check deals
with collaboration, working methods and the
application of agile principles in a team.

Working Together

Self-organized teams live a culture that
promotes psychological safety. They have the
desire to constantly improve themselves and
thus deliver the best results while having fun
at the same time.

Value-Oriented

Teams focus on an important agile principle
- the value orientation. Aligned with a clearly
communicated product vision, hypotheses
are quickly and effectively validated to achie-
ve the defined business outcomes.

Team Setup

Agile teams work together consistently over
a long period of time. Within the team, the
skills needed to deliver the service are avai-
lable and one role (e.g. the Scrum Master)
takes care of the processes and practices
defined in the team.

The team takes the end-to-end responsibility
for secure solutions from development to
operation.

Way of working

Agile is not chaotic or anarchic - concrete
results are delivered in short intervals.The
team follows a prioritized backlog that can
be viewed by all stakeholders. based on
experience, teams can ensure reliable fore-
casts.

Ecosystem

Especially in very complex systems and with
older architectures, there are still dependen-
cies to other departments. It is important
that teams know these dependencies and
manage them well.

Te
am

 F
itn

es
s

We live the principles in the „Team“ part of

the Collaboration Charter.

(see chapter „DevOps Understanding at

Swisscom“)

	○ We regularly address the subject of

charter as a team. We deal with the

content.

	○ We continuously improve ourselves.

	○ We consistently live the behavior

patterns described and examples of

this are visible in everyday life:

	○ We create the prerequisites for

working speedly and independently

and foster

interdisciplinary collaboration.

	○ Together, we deliver on our promises

and assume joint ownership for our

team results.

	○ We are proud of our built-in quality

and celebrate success.

	○ We live a “no blaming” culture that

encourages open feedback.

	○ We treat each other with respect

and we support everyone‘s work-life

balance.

	○ Mistakes are part of our collabora-

tive learning process.

	○ We remedy problems sustainably.

	○ We adhere to the rules of the team

and company.

	○ We take full lifecycle responsibility

for our products and service.

We work self-organized. We bear responsibi-

lity together.

	○ We can give examples of how and

where we have shared responsibility.

	○ As a team, we decisively determine

HOW something is implemented

and can influence the „WHAT“.

	○ As a team, we decide how much

work we want to do and how this is

coordinated

	○ We have defined our decision-ma-

king process and it is applied by

everyone as needed.

	○ All decisions can be made by ever-

yone in the team.

Te
am

 F
itn

es
s

 Collaboration

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Thanks to continuous reflection in the team,

we constantly and measurably improve per-

formance, cooperation, and working met-

hods.

	○ After each iteration we take time

to reflect on our performance, co-

operation, development and way of

working.

	○ We document results within the

team and make them transparently

accessible.

	○ We define improvement measures,

document them and implement

them.

	○ We make the expected perfor-

mance improvement transparent:

in addition to the actual measure,

the expected result (hypothesis) is

also defined.

	○ We measure the expected impro-

vement in performance and thus

demonstrate its impact.

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

We have a business vision that is central and

from which we derive clearly defined busi-

ness goals.

	○ The business vision exists and is

known to all.

	○ This enables us to generate value

for our company (shorter time to

market, greater flexibility in product

design, higher quality, lower produc-

tion and operating costs, etc.).

	○ We have derived quantifiable Key

Performance Indicators from this,

measure them regularly and make

the results available to everyone in a

transparent manner.

	○ The results of the KPIs are incorpo-

rated into the iteration planning.

	○ The KPIs are balanced and consider

all relevant dimensions (business

value, security, stability, costs, ...).

We have a client or product manager/owner

who continuously prioritises customer requi-

rements on behalf of one or more business

units and aligns them to business value.

	○ The product manager/product

owner/client is operationally in-

volved, i.e. they participate in the

respective team rituals.

	○ They are promptly available to the

team for questions.

	○ The product manager/product

owner/client regularly prioritizes

the work in order to generate the

greatest possible business value.

	○ They can make necessary business

decisions at any time and in consul-

tation with all stakeholders.

	○ The customer/product owner is a

person and not a group or imper-

sonal organizational unit.

Te
am

 F
itn

es
s

Value Orientation

Our work is based on hypotheses (falsifiable

assumptions) which we validate as effective-

ly as possible.

	○ Based on our observations and ex-

periences, we make hypotheses.

	○ We have clearly defined these hypo-

theses and made them visible to all.

	○ We test these hypotheses by car-

rying out simple, cheap and quick

experiments.

	○ The result of the experiment flows

into the further development.

	○ Behind every development and

every project there is a hypothesis.

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

We have one person in the team, such as the

Scrum Master, who takes responsibility of

ensuring that the values, processes and prac-

tices agreed by the team are adhered to.

	○ The described role is explicitly de-

fined and noticeably perceived.

	○ Rituals defined in the team are

guided and adhered to.

	○ Any problems, obstacles or discre-

pancies are addressed promptly and

dealt with in the team.

	○ Critical points can be addressed

openly and constructively.

	○ There is a trustworthy team struc-

ture in which everyone can contri-

bute and develop their strengths

and weaknesses.

We defined at least one security specialist in

the team who is responsible for the inter-

face to a central group security function (if

available).

	○ We are aware that the safety of your

products/services is your responsi-

bility.

	○ The security specialist is defined in

the team and has been communi-

cated to Group Security as an inter-

face.

	○ He/she has the necessary know-

ledge of security, DevOps and agility

to identify and communicate secu-

rity concerns / problems.

	○ He/she ensures for each iteration

that security aspects are discussed

and considered.

	○ All team members actively support

the Security Champion and jointly

contribute to the security of the

product/service.

	○ All team members have a minimum

understanding of security aspects.

Te
am

 F
itn

es
s

Team Setup

The relevant expertise for the task is availa-

ble in the team multiple times.

	○ The skill distribution does not dic-

tate the prioritization of work in the

team.

	○ Know-how is broadly anchored and

know-how transfer is carried out

continuously.

	○ The members of the team can per-

form several tasks/disciplines. They

remain the specialists in their field,

but acquire further skills (T-Shaped

Knowledge).

Our team works together stably over a lon-

ger period of time and we all devote most of

our working time to team tasks.

	○ All team members work with at

least 80% of their workload in the

team.

	○ Our team consists of 5 to 11 people

(incl. PO and Scrum Master).

	○ Our team works together in a stable

manner for a period of at least one

year.

Our team is responsible for the product and

service development throughout its entire

life cycle.

	○ Development, testing, deployment,

operation and phase-out are carried

out by our team.

	○ Operations tasks are automated

whenever possible

	○ Operations tasks are performed by

the whole team

We make realistic plans on which stakehol-

ders can rely on.

	○ We know our efficiency per iteration

and consider it during the planning.

	○ We inform stakeholders proactively

and transparently if there are delays

or deviations in planning.

	○ Measures to optimise predictability

are identified and implemented.

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Operation Ecosystem
Te

am
 F

itn
es

s

Our prioritized backlog can be viewed trans-

parently.

	○ We work with (exactly) one backlog.

	○ The backlog is an ordered list.

	○ The entries in the backlog are sorted

	○ The status of the backlog item is

current.

	○ The backlog is transparent and ac-

cessible to all relevant stakeholders.

	○ The backlog shows what can be

expected with the next iteration.

The implementation takes place in short

iterations or as a continuous flow into pro-

duction.

	○ We introduce changes continuously

or in short, synchronized iterations.

	○ Each iteration generates a value for

our company and/or the customer.

	○ Per iteration, at least one product

increment with the required qua-

lity can potentially be productively

implemented.

We are aware of dependencies on and to

other teams and actively manage them.

	○ We are aware of the dependencies

we have on other teams and organi-

sations (e.g. customer care, infras-

tructure, suppliers, central end to

end monitoring, etc.) and how our

work affects others.

	○ Regular contacts with these teams

are established and institutiona-

lized to effectively manage our

dependencies.

	○ Our collaboration with other teams

is regularly discussed and possible

impediments are identified.

	○ Impediments are proactively di-

scussed with the affected team and

measures are derived and imple-

mented.

To ensure that superiors and stakeholders

live the principles of the Collaboration Char-

ter, we proactively give them feedback:

	○ We give our superiors and stake-

holders both positive and negative

feedback on the Collaboration

Charter in a timely, open, honest

and constructive manner.

	○ We take a constructive and active

approach to the conduct and activi-

ties of our superiors and stakehol-

ders that hinder or restrict us.

	○ We provide timely, open, honest

and constructive negative feedback

to our managers and stakeholders

regarding the Collaboration Charter

(we don‘t let anything burn).

The second part of the DevOps Maturity Check deals
with the technical DevOps skills of a team. This part can
be performed per team for one or more applications or
services.

Note: Due to the fact that not all teams are typical DevOps teams, it is also possible to

skip this part.

Application
Fitness

Collaborative Developement

Highest Engineering Standards enable
innovative, high quality delivery of good
customer experience. It changes the way
companies build applications and impro-
ves business results. Customer Experience
Design is involved from the beginning. An
agile development platform facilitates cross-
team engagement and business feedback,
enabling rapid prototyping, rapid learning
and test-driven development. Application
Programming Interface (API) activation tech-
nology accelerates the analysis, implementa-
tion and testing of APIs to quickly integrate
new project systems into data systems.
Accelerator and mobile backend services (e.g.
workflow, security or push notifications) also
shorten the time from concept to code and
thus to the expected business value.

Continuous Testing

Highly automated approaches signicicantly
improve speed through a „shift left“ techni-
que. This method provides an online service
catalogue in a common portal that creates
automated test workflows, combined with
advanced analysis and metrics to deliver
results-based testing. Continuous testing
removes bottlenecks in testing through the
use of virtual services and simplifies the
creation of virtual test environments that
are easy to implement, share and update
as systems change. These capabilities can
reduce the cost of providing and maintaining
test environments. They shorten test cycle
times by enabling integration testing earlier
in the life cycle. Overall the quality of the test
results increase.

Continuous Release & Deployment

Continuous releasing creates a pipeline
that automates the deployment of test and
production environments. Deployments at
the push of a button reduce manual work,
waiting times and any follow-up work due to
any human misbehavior. This enables higher
frequencies, fewer errors and continuous
transparency.

Continuous Monitoring

A user-friendly monitoring of all platforms -
not only the production environment, helps
agile teams to understand the performance
and availability of their application. Early
feedback is critical to reduce the cost of er-
rors and detect issues as soon as possible in
the process.

Continuous Customer Feedback

and Optimization

Agility is the ability, to adopt quickly. A fast
feedback loop directly from the customer
and an appropriate reaction to the feedback
is important. Only when this is taken into
account can the benefits of agility be fully
exploited.

Ap
pl

ic
at

io
n

Fi
tn

es
s

Continuous Integration is implemented.

Code is checked into the repository at least

daily, which triggers a number of automatic

processes (build, deploy, test)

	○ Everyone can see the results of the

latest build

	○ Test in a clone of the production

environment (Important: A clone

of the prod still needs to fulfill the

prod‘s required protection level. The

handled data does not magically

change its confidentiality level)

	○ Keep the build fast (a couple of

minutes)

	○ Every commit (to baseline) should

be built

	○ Everyone commits to the baseline

every day

Best practices for the development process

are bindingly defined in the team and are

adhered to by all. The team works in the con-

text of „Built-in Quality“

	○ Compliance with standards is auto-

matically verified when the code is

checked in

	○ Code reviews are carried out for all

changes or are developed using peer

programming

Ap
pl

ic
at

io
n

Fi
tn

es
s

Collaborative Development

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Automated deployment

	○ Our source code is in a managed

Version-Controlled System

	○ All relevant deliverables are stored

on a manged Repository

	○ Each build is self-tested. All tests

should run to confirm that it be-

haves as expected

	○ All successfull builds are stored on a

manged Repository

	○ Automate the build with central

build services

In each iteration the Threat Model is upda-

ted to the latest version

	○ Coding and naming standards are

defined and adhered to

	○ Tool-based task and defect manage-

ment statuses correspond to reality

at all times. All tools are linked and

their status is automatically up-

dated

	○ All (software) dependencies are

known, transparent for all and are

actively managed

	○ The documentation is updated in

each iteration and always describes

the current state

	○ A Threat Model exists

The requirements were divided and defined

on the basis of capabilities, features and

stories. All elements are clearly defined and

comprehensibly described for all involved

(Procedure according to the Built-in Quality

Strategy)

	○ In a scaled environment, require-

ments are structured hierarchically

(e.g. in Program Epics, Features and

Stories)

	○ Requirements are developed toge-

ther with all relevant stakeholders,

for example using Behaviour Driven

Development (BDD).

	○ Realized backlog items are validated

together with all relevant stake-

holders, for example within Sprint

Demo, System Demo, Solution

Demo, User Acceptance Tests, etc.

	○ The Backlog Items are cut small

enough so that they can be imple-

mented within a useful period of

time (e.g. an iteration)

	○ We have a Definition of Ready, a

Definition of Done and work with

Acceptance Criteria‘s.

Ap
pl

ic
at

io
n

Fi
tn

es
s

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Collaborative Development Continuous Testing

The test automation (White-Box and Grey-

Box Testing) is available at the latest simul-

taneously with the finished code

	○ Regression tests are managed, so

that they cover the current range of

functions and can be swiftly exe-

cuted

	○ System integration tests are derived

from the acceptance criteria of the

Feature

	○ At the latest with the finished code

fully automatic unit testing, unit

integration testing, system tests,

and system integration tests are at

your disposal

	○ Automatic security checks (e.g.

security unit tests, SAST, vulnerabi-

lity scans) are integrated into the

development process

	○ Unit tests flow into an automated

regression test, which is performed

automatically with the build

	○ Unit integration tests are derived

from the acceptance criteria of the

Story

All tests are performed fully automated

after the build. The test automation and

execution is the responsibility of the team

	○ Continuous automation of the

entire test chain (unit, system, secu-

rity and performance tests). Only a

few explorative tests (< 5 %) are still

performed manually

	○ The responsibility for test execution

is clearly defined by those involved

in the large solution (acceptance

criteria of Capabilities), program

(acceptance criteria of Features) and

team level (acceptance criteria of

Stories).

Test scenarios and data are versioned and

test results can be recreated with any ver-

sion at a later time

	○ Versioning of the test attributes is

linked to the code version

	○ Tests of a certain version can be

repeated at any time and produce

the same results

	○ All attributes relevant for the test

(test data, test scripts, test results

...) are versioned

Scenarios for all capabilities, features and

stories are defined. The scenarios were deve-

loped in cooperation with all stakeholders.

	○ For each Backlog Item scenarios are

defined

	○ The scenarios were defined in col-

laboration with the relevant stake-

holder

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Continous Deployment

Any version can be made available through

self-service on any platform. If required, a

separate infrastructure (VMs, DBs, Contai-

ner, etc) is created with the deployment

	○ Deployments of any version can

be easily performed in self-service

mode by the team and all relevant

stakeholders. The installation is

performed automatically

	○ The application runs on cloud in-

frastructure

	○ Required infrastructure can be

created together with the deploy-

ment

	○ All deployment scripts on all envi-

ronments are fully automated

	○ Deployment to any environment is

performed with the same deploy-

ment automation

The provisioning of releases (making new

functionality available on the market) can

take place completely independently of the

actual deployment into production (import-

ing a new release into production)

	○ It is possible, with Feature Toggles or

Dark Launching, to place a feature

on the production system, but still

prevent its productive use

	○ Any interfaces offered to other ap-

plications are backward compatible.

Changes can therefore be imple-

mented independently of each other

Ap
pl

ic
at

io
n

Fi
tn

es
s

Deployments take place without noticea-

ble effects or downtime during the running

operation

	○ It is possible to make deployments

only available for a specific group

of users (e.g. with A/B Testing or

Canary Releasing)

	○ A final switch-over to the new

version is only made when minimal

quality tests have been carried out

in production

	○ All components are deployed wit-

hout interrupting the service (blue/

green deployment)

	○ Due to the low impact, deployments

can be carried out during office

hours

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Continous Monitoring

The relevant production monitoring infor-

mation is available to all involved parties

continuously and at any time

	○ It is defined whether the service

needs to be monitored from a se-

curity perspective and which moni-

toring information is forwarded via

the defined interfaces

	○ The central end to end service moni-

toring clarifies whether the ser-

vice is monitored there and which

monitoring information for event,

incident and change management

is forwarded via the defined inter-

faces

	○ Monitoring information is for-

warded to other involved parties/

systems (e.g. Data Lake)

	○ Continuous and uninterrupted col-

lection and delivery of the relevant

monitoring informations from pro-

duction to the relevant interfaces

	○ The team has the relevant metrics

about their services, as well as

about the application of the pro-

duct. The metrics are visualized and

are present in the team

	○ Security-relevant monitoring cases

are derived from the metrics

	○ The monitoring tools used are

based on the defined target archic-

tecture

Ap
pl

ic
at

io
n

Fi
tn

es
s

The monitoring takes place on all environ-

ments (test, integration, staging, PreProd

and Prod, as well as clones thereof) in order

to recognize impacts of a change on the ser-

vice or the monitoring as early as possible

	○ Identical metrics are measured on

all environments

	○ The monitoring scenarios on the

different environments are identical

and are automatically rolled out on

the environments

	○ A negative impact of a change is

detected and corrected as early as

possible before going live, which

has a positive effect on the Incident

after Change Rate

	○ Real-time metrics from monitoring

are already used during develop-

ment for control and quality assu-

rance (Metric-Driven Development).

	○ Metrics on all environments are

transparent, are actively monitored

and are available to all relevant

stakeholders

The monitoring scenarios are continuously

developed, tested and brought into pro-

duction by the team as part of the service/

product

	○ To ensure quality, the team defines

the relevant monitoring scenarios

based on business and security

input, knowledge of business pro-

cesses and technical implementa-

tion

	○ Monitoring is based on efficient,

joint monitoring solution

	○ The monitoring scenarios are conti-

nuously developed, tested, deployed

and maintained by the team toge-

ther with the service/product

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Rating

0 	 1	 2	 3	 4	 5

Continuous Customer Feedback & Optimization

Hypotheses on the expected customer beha-

vior of the implemented change are syste-

matically tested in production

	○ This hypothesis is validated automa-

tically and regularly with active tests

in production

	○ Each feature is based on a hypo-

thesis regarding the impact (cus-

tomer buys product or uses func-

tionality, usability becomes better,

errors can be corrected, performance

increase, ...).

Ap
pl

ic
at

io
n

Fi
tn

es
s

Channels, through which customer feedback

is obtained regularly and systematically are

established and institutionalized

	○ It is defined how feedback from the

customer can be collected (this can

be surveys, CUC messages, tweets,

etc.)

	○ Feedback is collected continuously

and as automated as possible at

least on a monthly basis

	○ A defined and lived process exists

by means of which this feedback is

systematically collected

New developments or corrections are first

released for a limited group of end users

(whitelist, friendly user, ...) and this group is

then continuously expanded

	○ Each feature is first made available

to a small group and automatic

tests are performed

	○ Only if the tests carried out are suc-

cessful, the feature is continuously

made available to a larger group

	○ Canary Releasing and/or similar

concepts are implemented where

appropriate

Thank you for using the DevOps Maturity Check! We encourage
you to tweak it to fit your team or company‘s context.

We‘re happy to hear of your experience, so please don‘t hesitate
to reach out to us and give us feedback!

Good Luck!

Thank
You!

	Example-Vertikal: Off
	Question1: Off
	Question2: Off
	Question3: Off
	Question4: Off
	Question5: Off
	Question6: Off
	Question7: Off
	Question8: Off
	Question9: Off
	Question11: Off
	Question10: Off
	Question13: Off
	Question15: Off
	Question12: Off
	Question14: Off
	Question16: Off
	Question17: Off
	Question19: Off
	Question18: Off
	Question20: Off
	Question21: Off
	Question23: Off
	Question25: Off
	Question22: Off
	Question24: Off
	Question26: Off
	Question28: Off
	Question27: Off
	Question29: Off
	Question30: Off
	Question31: Off
	Question32: Off
	Question33: Off
	Question34: Off

