
dynamic, fast, effective
and secure

DevSecOps

Publishing details

Editor Swisscom Ltd
Author Group Security
Editorial Staff René Mosbacher, Faktor Journalisten AG, Zurich
Illustration Agency Nordjungs, Zurich
Copyright © March 2019 by Swisscom Ltd,
 Group Security, Berne

All rights reserved. Parts of this work
may be reproduced provided the source
is acknowledged. The greatest care has
been taken in putting together texts and
diagrams. However, errors cannot be
excluded completely. Websites are con-
stantly changing. Swisscom cannot
therefore guarantee that quotations and
illustrations correspond to the current
websites. The publisher and authors
cannot accept legal responsibility or any
liability for incorrect information and
its consequences.

Almost all hardware and software as well
as company names and logos mentioned
in this work are also registered trade-
marks and should be considered as such.
The editorial team essentially follows
the spellings of the manufacturers when
it comes to product designations.

Contents
1 Foreword .4

2 About this publication .6
2 .1 Why this booklet? .6
2 .2 Target audience .7
2 .3 Structure of the publication . .7

3 DevOps – Introduction .9
3 .1 Why – why DevOps? .9
3 .2 What – what is DevOps? .9
3 .3 How is DevOps introduced? .9
3 .3 .1 Skill sets . 10
3 .3 .2 Scaling – DevOps in large organisations 12
3 .4 Impact – what does DevOps do? . 12

4 DevSecOps – security in a DevOps context 15
4 .1 Training & Awareness . 17
4 .1 .1 For who? . 17
4 .1 .2 Training & Awareness concept . 18
4 .2 Organisational scaling . 20
4 .2 .1 Skill diversity in the DevOps organisation 21
4 .2 .2 Security roles in the organisation . 21
4 .3 Security in planning activities . 26
4 .3 .1 Define security requirements . 26
4 .3 .2 Threat modelling . 27
4 .4 Technical security activities . 31
4 .4 .1 Security solutions . 31
4 .4 .2 Automated security testing . 33
4 .4 .3 Manual security testing . 38
4 .5 Deployment pipeline security . 40
4 .6 Productive operations and attack response 45
4 .6 .1 Security monitoring . 47

5 Summary . 52
6 Abbreviations . 54
7 Index . 56
8 Further resources . 57

3

1 Foreword
Today, we live our lives online . The internet has no geography . It has no borders . By
creating the internet, mankind opened up a Pandora’s Box where tangible borders and
recognizable enemies ceased to exist .

In fact, we are the first generation in mankind’s history that is more likely to become a
victim of a crime in the online world instead of the real world . This is a major shift .

In this new world, companies are facing new kinds of risks too . Headlines are full of
examples of data breaches in large companies . Today, every company is a software
company, and every company should pay attention to online security . Today, cyber
security should be a permanent board-level topic .

In the end, there are only two types of security problems: technical problems and
people problems .

Technical problems can be fixed by patching . But people problems can’t . There’s no patch
for stupidity . No matter how many times you tell them, users will always follow every
link, they will always double-click on every attachment and they will always type their
password on every phishing site . Guaranteed .

Vulnerabilities in our systems are, in the end, just bugs in the code . Why do we have
bugs in the code? Because programs are programmed by human beings and humans
make mistakes .

So how can we minimize the number of mistakes programmers make? We need better
security engineering . We need a better culture around security . Security should be
built-in, instead of being a perimeter around applications and the data they handle .
Security should be an integral part of the entire life cycle of a software project .

Security does not end with software engineering and security audits . No matter what
kind of a system you build, you should always assume there’s going to be a breach any-
way: someone will get in via a route you never thought of . Therefore companies should
focus on detecting breach and reacting to them . Resilience is the key .

We all have limited resources and limited budgets to defend our networks . Under-
standing the enemy enables us to focus our resources to where it matters the most .

4

D
ev

Se
cO

ps
 |

Fo
re

w
or

d

And when we are trying to fight hackers, one of our best resource is hackers . You see,
we need good hackers to catch bad hackers . This is why bug bounties work . Starting a
bug bounty program takes a lot of work, but it will give new viewpoints to the security
of your systems . I personally love the fact that many large companies now run open
bug bounties, as this gives me an easy answer to give to eager young hackers I meet .
“So, you want to hack a company? Okay: Go hack Microsoft, or Google, or Apple . That’s
perfectly legal, as long as you do it within their bug bounty programs . They’ll even pay
you for it .”

I’ve been working with security for close to 30 years . Our work never ends .

I wish you the best of luck in developing secure systems . This booklet on DevSecOps is a
great example on practical things we can do to make the world around us more secure .

Thank you for your work .

Mikko Hypponen
Chief Research Officer, F-Secure

5

2 About this publication
2.1 Why this booklet?
Swisscom, with around 20,000 employees, is a large company with roots in telecommuni-
cations . Over the years, further business fields have been added and today Swisscom is
also a classic IT service provider and the most important information and communication
technology (ICT) company in Switzerland .

In 2016, it was decided to align the company with agile principles . The first step here was
taken by the Innovation department, followed by the Development departments and
now the whole company is on board . How Swisscom uses DevOps in practice is explained
in chapters 3.3 and 3.4 .

In the course of the transformation, it became clear that the support previously offered
by the central security organisation could only be applied to a limited extent in an agile
environment . On the basis of this insight, the security initiatives described in this booklet
were launched or expanded .

This publication offers a collection of best practices from the Dev(Sec)Ops environment .
It was written from the point of view of the enterprise environment and also documents
the experiences within the company so far . This should benefit other companies and
experts facing similar tasks .

In 2016, Swisscom created its first Development department based entirely
on the DevOps principles. This enabled the company to learn how to scale
agility to an area with more than 100 people.

In addition, it was found that the “agilisation” of development teams did
not reduce the problems in the company. More and more operators were
involved in development activities, who then also ensured that really opera-
ble solutions were built. But for the actual 7×24-hour operations of all the
existing applications, fewer and fewer personnel were available.

For this reason, the organisation – according to the motto “you build it, you
run it” – was once again restructured for 2017. Instead of the classic division
between development and operations, IT was reorganised into a software
and an infrastructure area. Within these areas, however, all tasks (develop-
ment, testing, security, operation) are under the responsibility of the product
team. This has created and continues to create a much greater sense of re-
sponsibility for the code developed.

6

D
ev

Se
cO

ps
 |

Ab
ou

t t
hi

s
pu

bl
ic

at
io

n

With these changes, more and more areas were introduced into the workings
of DevOps. Soon, however, it became apparent that a scaling framework
was needed. Swisscom decided to introduce the Scaled Agile Framework
(SAFe) and applies it wherever agile at scale is required.

The adjustments have significantly increased operational agility. However,
it has also been shown that the advantages of DevOps are not limited to
development and operations – on the contrary. At the core of DevOps has
always been the desire to include the entire value chain.

In 2018, for example, the focus was increasingly on transferring agility from
the operational to the strategic level. Business should be more involved and
business processes should be adapted if they contradict the agile principles.

A DevOps journey needs time and endurance. And so, Swisscom will con-
tinue to work on its continuous development over the next few years. On
the one hand, this concerns technical capabilities such as decoupling, con-
tinuous delivery or test automation. On the other hand, however, it is above
all about the cultural level, i.e. achieving more self-organised teams and a
stronger flow optimisation.

2.2 Target audience
This publication is aimed at experts who can or want to help shape a DevOps environment
themselves . In particular, persons are to be addressed who must also guarantee security
in a highly agile IT environment . You will receive an explanation of the basic concepts as
well as short field reports from Swisscom’s environment .

It is assumed that the readers have a basic knowledge of DevOps . Resources, such as web-
sites or books, that allow a more in-depth look at topics are linked throughout or listed at
the end .

2.3 Structure of the publication
The first part of this booklet deals with the basic ideas and principles of DevOps .
The following aspects are highlighted in particular:
• Why – why does an organisation choose DevOps?
• What – what defines and qualifies DevOps?
• How – how is DevOps introduced?

This is the basis for the second part, which specifically explains the security aspects of
DevOps . The subchapters first list which points must be specifically taken into account
with regard to People, Process and Technology .

7

The second part is structured according to a simplified Software Development Lifecycle
(SDLC, see Figure 1) . First, it discusses cross-cutting issues such as Training & Awareness
(T&A) and the way in which security must be set up to fit into the dynamics of a DevOps
organisation . These issues are crucial if the security department aims to participate in
shaping a successful DevOps organisation . Then, step by step along the SDLC, it is exam-
ined how security should be handled so that its effectiveness can develop within the
DevOps environment .

A chapter follows on the deployment pipeline, the actual factory . Not surprisingly, auto-
mation plays an important role here . Finally, it is explained how the new approaches can
be profitably used for the rapid detection and defence of attacks .

At selected points, experience reports and solutions from Swisscom’s environment are
included . They should help to better understand described principles and to learn from
mistakes already made . These sections are each highlighted in blue .

Fig . 1 | A simplified Software Development Lifecycle

PLAN

BUILD

DEPLOY

RUN

TEST

LEARN

8

D
ev

Se
cO

ps
 |

D
ev

O
ps

 –
 In

tr
od

uc
ti

on

3 DevOps – Introduction
3.1 Why – why DevOps?
Faster, better, cheaper, happier – DevOps is about creating business value faster and creat-
ing more robust systems that lead to more customer-focused products . Appropriate
forms of cooperation and team organisation ensure that these efforts are not at the ex-
pense of employee satisfaction . Whoever masters this is equipped for the ever faster
moving IT world, which is also characterised by increasing volatility, uncertainty, complex-
ity and ambiguity (keyword VUCA: volatility, uncertainty, complexity and ambiguity) .

3.2 What – what is DevOps?
DevOps has evolved from various existing movements . These include the Agile Manifesto,
the Lean Movement, the Continuous Delivery Movement and the Toyota Kata 1 . Thus,
DevOps is not a framework, a tool or an organisational form . Rather DevOps can be regard-
ed as the consistent integration and further development of the mentioned concepts .

The IT expert John Willis is one of the DevOps pioneers and strongly influences the scene .
He introduced the acronym CALMS to describe DevOps (first it was just CAMS – then
Jezz Humble added the L) 2 . CALMS consists of:

• Culture – a cross-functional collaboration with a culture of shared responsibility
• Automation – as many tasks as possible are automated
• Lean – visual representation of value flow and work packages flowing at any time
• Measurement – forming, validating and learning hypotheses 3
• Sharing – sharing responsibility and success, both between operations and develop-

ment and across team boundaries

3.3 How is DevOps introduced?

3 .3 .1 Skill sets
A good overview of the skills required is provided by the IBM reference model «DevOps:
The IBM approach – Continuous delivery of software-driven innovation» . 4

1 The DevOps Handbook by Patrick Debois, Jez Humble, Gene Kim, John Willis
2 DevOps Culture (Part 1) by John Willis, URL: itrevolution.com
3 Hypothesis-Driven Development by Jeffrey L . Taylor, URL: drdobbs.com
4 DevOps: The IBM approach – Continuous delivery of software-driven innovation (particularly page 6),

URL: developer.ibm.com/community

9

http://itrevolution.com/devops-culture-part-1/
http://www.drdobbs.com/architecture-and-design/hypothesis-driven-development/229000656
https://www.ibm.com/developerworks/community/files/basic/anonymous/api/library/36ed35f5-2b62-4317-95eb-8cb3fdcfc10f/document/d78408a7-2056-44d2-a70e-1704dc140707/media

Swisscom relies on an adapted version of the IBM reference model. The com-
pany uses it as a holistic system that not only covers development, but all
relevant skills along the entire value stream. The Swisscom model describes
skills that are relevant for a DevOps operation, but it is not a flowchart.

Fig . 2 | Swisscom model of the skills needed for DevOps

Interdisciplinary team

BIZ OPSDEV
Collaborative

 Development

Continuous
Testing

Continuous
Monitoring

Continuous Customer
Feedback & Optimization

Continuous Release &
Deployment

Continuous
Business Planning

MVP

Simplicity

Built-In
Quality

Speed

Operational
Excellence

GOAL

10

D
ev

Se
cO

ps
 |

D
ev

O
ps

 –
 In

tr
od

uc
ti

on

For DevOps to succeed, the following prerequisites must essentially be fulfilled:

1. The team is at the centre: The focus is on an interdisciplinary, fully dedicated, autono-
mous team that communicates at eye level (see also 3.2, «Culture» section in CALMS) .

2. Continuous business planning: This refers to the ability to react quickly to customer
needs and to incorporate appropriate feedback on an ongoing basis . The focus is always
on the customer’s needs and defines the product .

3. Collaborative development: This term describes the ability to continuously generate
value in short iterations and interdisciplinary teams consisting of representatives from
business, development, security, testing and operations . This assumes that source
code is continuously checked in to a code repository – in the best case several times a
day . Everything is regarded as code – this includes infrastructure, deployment scripts,
monitoring, test data and more, in addition to the actual application source code .

4. Continuous testing: This includes the ability to test the code in a reproducible and repet-
itive manner . Automatic tests allow you to examine it in many ways immediately after
checking it into the repository . This allows early and continuous testing instead of just at
the end of a process chain, shortly before releasing to production . This makes testing
part of the overall process . This in turn improves cost efficiency as errors can be correc-
ted earlier in the cycle and thus more cost-effectively 5 .

5. Continuous release & deployment: This is the ability to automatically carry out a build
and deliver it to any environment . This is necessary to exploit the full potential of auto-
mated testing . The code check-in to the repository allows you to carry out a number of
automatic processes, from build to test to deployment . This significantly reduces man-
ual activities .

6. Continuous monitoring: This involves monitoring the entire system on all platforms at
all times . This makes it clear immediately after the release of a new feature whether it
influences the performance of the overall system . This early feedback helps to further
improve quality .

7. Continuous customer feedback and optimisation: The ability to continually improve
software based on measurements and feedback from both the customer and the
business . Customer behaviour is very consciously analysed and various channels are
used to receive early and comprehensive feedback .

5 Figure: Relative Cost of Fixing Defects by Maurice Dawson, URL: researchgate.net

11

https://www.researchgate.net/figure/255965523_fig1_Figure-3-IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects

3 .3 .2 Scaling – DevOps in large organisations
All agile approaches focus on the team . This is a good thing because the value of a small,
dedicated team (ideally 5 – 7 people) cannot be overestimated . In the best case scenario,
such teams can develop their services completely autonomously and deliver code .

Independent teams are rarely possible, especially in large organisations with a strongly
coupled IT architecture . This raises the question of how scaling can be solved . The Scaled
Agile Framework (SAFe), for example, helps here . It is a collection of best practices that
describes a possible scaling . 6

Swisscom has decided to use SAFe to practice “Agile at Scale”. In reality, this
means: If a product is too complex and too large to be carried by an autono-
mous team alone, Swisscom uses SAFe structures. The framework helps to
create a common understanding of how “Agile at Scale” works. However, only
those elements and roles of SAFe that effectively offer added value are ap-
plied. Swisscom takes over some elements as they are; others are adapted to
requirements, such as the role of security.

3.4 Impact – what does DevOps do?
If you want to introduce DevOps into your organisation, you should be aware that it influ-
ences the entire value chain . The relevant aspects are discussed below .

For the customer
Actually, customers don’t care how the services are produced . They have the legitimate
requirement that their needs are met quickly and reliably . Their systems should be availa-
ble, error-free and reliable . In our rapidly changing world, this is increasingly difficult to
achieve with classic models . With DevOps, on the other hand, the customer receives solu-
tions that are better tailored to his needs and can be implemented more quickly .

In the company itself
The State of DevOps Report 7 has been collecting data for several years on how DevOps
practices affect companies . It was clearly demonstrated that companies with a high
DevOps maturity are economically more successful . However, in this context it is impor-
tant to point out that DevOps cannot be a cost saving programme . Higher efficiency is
the result of well-established DevOps practices – but it cannot be the goal .

6 SAFe . Scaled Agile Inc ., URL: scaledagileframework.com
7 State Of DevOps Report by Puppet + Splunk, URL: puppet.com

12

D
ev

Se
cO

ps
 |

D
ev

O
ps

 –
 In

tr
od

uc
ti

on

https://www.scaledagileframework.com
https://puppet.com/resources/whitepaper/state-of-devops-report

In the organisational structure
Agility and DevOps rely heavily on autonomous teams . Decisions are taken in an as de-
centralised as possible manner . Such an environment naturally requires special leadership
qualities . It is important that the teams are diverse and cross-functional . Experience has
shown that this leads to better solutions .

The composition of the teams should be as constant as possible . This encourages joint and
mutual learning . This also results in an important paradigm shift for project/product pro-
cesses: The work should be brought to the team and not the team to work . This in turn means
that work on the continuous development of a product is much more intensive than on
self-contained projects . It is important that decisions are made as far as possible where the
consequences arise . This is another reason why interdisciplinary teams are so important .

DevOps is also to reduce the organisational silos . In this way, the flow of values is given
much greater weight than organisational affiliation . For this reason, the process organisa-
tion is also much more important than the organisational structure .

The implementation of DevOps has led to organisational adjustments at
Swisscom, particularly in IT. Previously, application development and opera-
tions were located in separate departments with different goals. «Dev»
was measured by the number of functions supplied. «Ops», on the other hand,
was measured by the stability of the systems and therefore tried to keep
the number of changes small. In order to resolve this conflict of objectives and
strengthen joint responsibility, these departments were merged. Now each
team is not only responsible for the development, but also for the operation
of its applications.

In a team and with the individual
DevOps focuses strongly on the team and team responsibility . Goals are set in the team
and the team members support each other in achieving them . The focus is on the team
goals and not those of individual team members .

DevOps shortens cycles and intensifies cooperation massively . Direct communication
between all parties involved must therefore be consciously promoted . The Agile Manifesto
provides concepts for this 8 .

8 Manifesto for Agile Software Development by Kent Beck et al ., URL: agilemanifesto.org

13

http://agilemanifesto.org

In his book «Drive», Daniel Pink 9 writes that motivation mainly depends on the factors
Autonomy, Mastery and Purpose . DevOps does justice to these very well:

• Autonomy is the result of decentralised decision-making and the autonomy of the team .
• Mastery is promoted by the necessary continuous learning .
• Purpose becomes clearer because the responsibilities and effects of the work can be

experienced very directly . You are not just a cog in a large machine, you are responsible
for a specific product right through to production . Most employees probably appreci-
ate that .

The development process is generally shorter and faster with DevOps . This shortens the
feedback loops . This in turn means that information and knowledge, and thus also re-
sponsibility, flow back more quickly to the start of the process, i .e . to development . This
effect is also called «Shift Left» . 10

With DevOps the members always work in as dedicated a manner as possible for their
team . This helps to avoid priority conflicts, develop a healthy team culture and promote
joint learning . What has already been described about the influence of DevOps on the
organisational structure also applies: the team’s work is more focused on the continuous
development of products than on the execution of individual projects .

9 Drive by Daniel Pink, URL: danpink.com
10 Shifting Left – Approach and Practices by Paul Bahrs, URL: slideshare.net

14

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

http://www.danpink.com/drivewww.danpink.com/drive
https://www.slideshare.net/Urbancode/shift-left

4 DevSecOps – security
in a DevOps context
By definition 11, security is already strongly mapped in DevOps . Therefore, it seems unnec-
essary at first glance to give it additional weight with another artificial term like DevSecOps .
Experience shows, however, that in the course of “Shift Left”, issues are repeatedly ne-
glected – security is particularly at risk here . Essentially, DevOps poses three important
challenges:

• Elimination of fixed process tollgates or milestones
What has already found its way into iterative project management processes applies
even more to DevOps: Individual milestones that require manual approval are counter-
productive for DevOps because they extend the lead time from idea to production .
Therefore, DevOps does not allow security reviews to be anchored before “go-live”, as is
often the case in classically managed projects .

• Elimination of the separation of powers between system and application
(Segregation of Duties)
Due to the diversification of skills and the associated end-to-end responsibility within
the DevOps teams, all team members receive the same authorisations . The consequence
of this is that many more individuals gain access to valuable data .

• Uncertainty regarding responsibilities for risks
What was anchored via the line function in strictly hierarchical organisations is bound
to the role in a DevOps organisation . Risks should have an owner who bears or miti-
gates them .

To take these aspects into account, the security community has created the artificial term
DevSecOps . It should help to shed more light on security in a DevOps environment . It also
illustrates, however, that all activities relating to the product life cycle must be closely
interlinked . For security this means primarily: security activities are only suitable for DevOps
if they can be applied iteratively .

11 The DevOps Handbook by Patrick Debois, Jez Humble, Gene Kim, John Willis

15

The framework conditions for security can be illustrated using the three pillars People,
Process and Technology:

These three pillars are taken up again at the beginning of each subchapter . They aim
to describe the most important points in each area of activity . The three columns can be
defined as follows:

• People: Activities and measures that contribute to the DevOps culture within the
company

• Process: Everything you need to know about processes and the organisational setup so
that security in DevOps gets its proper place

• Technology: The core of DevOps is the ability to automate repetitive processes –
it’s about how to deal with automation and the resulting challenges and opportunities

In a DevOps product development, it is difficult to cleanly assign individual activities
to one of the three pillars . That is why the columns are subsequently always presented
together .

The following subchapters describe the essential capabilities that should be sought in a
DevOps organisation with a corporate dimension . They also show where there are synergy
potentials between the various security activities . This helps to minimise the additional
effort and the additional friction to what is really necessary . The sequence of the subchap-
ters is based on the various activities of the simplified software development lifecycle
(see chapter 2.3), thus:

• Training and Organisation
• Planning and implementation of a product/feature
• Deployment and operations

People Process Technology

People who use DevOps
are made to intrinsically
consider the security of a
product as well

Processes support secure
development of a product

In changing organisations,
the relevant contact per-
sons must be easy to find
with regard to security

“Security as Code” is con-
sistently implemented –
making it comprehensible,
reproducible and mutable

16

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

4.1 Training & Awareness

When it comes to providing technical support for decisions, prioritisations or other con-
trolling activities, it is important that all participants receive Security Training & Awareness
(T&A) . In a DevOps environment, every team member must be aware of where miscon-
duct or a systemic error can have major consequences . Everyone must also be aware of
which basic assets are to be protected (for example data) .

Good awareness helps to develop a feeling for insecure things . This is very useful because
security is often less visible and noticeable compared to other requirements . A healthy
gut feeling makes it easier for those involved to think about the consequences of their
actions .

4 .1 .1 For who?
In principle, all members of an organisation are jointly responsible for security . This is why
a Training & Awareness programme is needed that imparts a broad basic knowledge
and is therefore relevant for all employees (e .g . in the secure handling of data) . In addition,
such a programme must also impart role-specific knowledge . This allows employees to
further their education in their area of competence, if necessary up to expert level .

Central to this chapter:

People Process Technology

Know where and when
security needs to be
considered

Training & Awareness is
mandatory for the relevant
stakeholders

Scalability and sustainabil-
ity of the awareness and
training method(s)

Fig . 3 | Involved roles in DevOps basic knowledge and general awareness

Executive level

Strategy

influences

influences
Information
worker

Info

App

Architecture
Architect

Engineer

Business
Representative

17

Every member of the organisation must have a minimal basic knowledge of security and
data protection . For this reason, basic training courses are to be offered, for example in the
form of e-learning . The target group of such trainings includes all roles involved in DevOps:

• Engineers – take care of the technical provision of products
• Architects – are responsible for correct interactions and processes within products and

at their interfaces to the outside world
• Business Representatives – prioritise content aspects of the product and thus influence

the direction of development
• Executives – take responsibility for and manage overarching aspects in the company
• Information Workers – the (internal) beneficiaries of provided products

Role-specific Training & Awareness units
Role-specific training sessions for Training & Awareness help team members to identify
relevant security and privacy issues and apply their knowledge in practice . The aim here
is to convey a basic understanding that, for example, allows an architect to plan in the
necessary security components . Or it should help the business representative to plan for
sufficient time and resources for security hardening and fixes . For this to succeed, the
training content must be tailored to the respective role .

Training & Awareness for specialised areas
Very in-depth, specific security training is especially useful for engineering and develop-
ment . The goal must be to have at least one specialised person per DevOps teams
(see 4.2.2  Security Champion) who has advanced knowledge in security (and data
protection) . They should act as a link to the central security organisation .

4 .1 .2 Training & Awareness concept
The concept for Training & Awareness is based on the following three main pillars:

1 . Continuous training with short learning units (micro-learnings), some of which also
offer repetitive content . Wherever possible, long learning units are divided into several
shorter ones . This makes it easier to record the content and increases acceptance
among employees .

2 . Awareness campaigns repeatedly draw employees’ attention to possible dangers (such
as fake phishing campaigns) . This is intended to create a «background noise» that per-
manently anchors security awareness in people’s minds .

3 . Special communication channels help to disseminate security topics and, above all,
training & awareness offerings for specific roles .

18

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

In terms of content, the Training & Awareness concept at Swisscom provides
for four levels. With each step, the content becomes more specialised, which
also reduces the target audience. Participants can obtain an internal Swisscom
certificate at each level. The first stage consists of the Trekker modules.
Their primary purpose is to raise awareness of internally available and centrally
managed services around DevOps. Basic DevOps approaches such as Source
Code Management, Continuous Integration/Continuous Deployment are
also taught. The participants also learn the common vocabulary, which then
runs through the following stages. In the end, even beginners should have
the necessary information at hand and be aware of secure DevOps services
with which they can quickly work productively. The communication of spe-
cific security content is deliberately omitted.

The Hiker modules present security services on the one hand. On the other
hand, participants will receive an introduction to the most important vulner-
abilities such as cross-site scripting and SQL injection. Data from Swisscom’s
bug bounty programme (see chapter 4.6) was used to prioritise the vul-
nerability classes. Additionally, the Open Web Application Security Project
(OWASP) Top 10 project, was used for prioritisation as well. Both stages,
Trekker and Hiker, are simple and can be checked in an automated manner
by means of a multiple-choice quiz.

The Mountaineer modules are attended by people who want to know how
to deal in practice with vulnerability classes seen in theory during the Hiker
module. For this purpose, participants who otherwise build systems or
products should be able to change sides for one or two days in order to get
to know the attacker’s point of view. Participants who wish to obtain this
certificate are expected to be able to apply the findings in their “everyday

Fig . 4 | The four mascots of Swisscom’s certification programme in the DevSecOps area:
Trekker, Hiker, Mountaineer, Alpinist

Basic knowledge Basic security
knowledge

Hands-on security
knowledge

Specialized security
knowledge

19

job”. Their experiences in doing so should be shared with the DevOps com-
munity, such that other participants can learn from that.

At the Alpinist stage, a high degree of specialisation is required. Here, the
aim is to achieve an external certificate that is recognised on the market, for
example the Certified Secure Software Lifecycle Professional (CSSLP) or
similar ones. The graduates should ultimately be able to influence the inter-
nal security culture of the organisation by sharing re-usable contents with
the community. Similar to the Mountaineer level, this act of contribution
represents also the completion criteria.

4.2 Organisational scaling

To anchor security as an attitude within the organisation remains a challenge, even in the
age of DevOps . In contrast to other non-functional attributes such as performance or op-
erational stability, a lack of security is not immediately noticeable in a product . We know
that from everyday life: If an application reacts sluggishly, customers become active quite
quickly . But if there is a lack of security, they only notice it – if at all – much later, when
something has already gone wrong . We must therefore give security the visibility it de-
serves . If data is lost or manipulated, the effects are often fatal .

Classically, there are around 10 operators per 100 developers in IT, but only 1 security
specialist available . Thus, one-to-one support of employees in security matters is unrealistic
from the outset . This will not change even in a DevOps organisation . Therefore, it is im-
portant that all parties involved in DevOps (business, development, test, operations; see
also ‘Collaborative Development’ in chapter 3.3) increase their security competence and
are supported by the central security organisation . Matrix communication also helps here .
This is the networking of people who have the same role within the different teams . This
enables them to constantly exchange information with their peers across the company
while contributing their knowledge as a subject matter expert to their own DevOps team .

Central to this chapter:

People Process Technology

Keep communication
channels short

Promote matrix
communication

Document and
clearly communicate
responsibilities

Enable an overview of the
organisation and the differ-
ent roles at any time

20

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

 As already described in chapter 2.1, Swisscom uses the Scaled Agile Frame-
work (SAFe) in an adapted form. One of the adapted areas is the integration of
security into the organisation – it is not sufficiently designed for Swisscom
purposes in the basic framework. This chapter looks in more detail at where
and why the implementation of security at Swisscom differs from SAFe. It
also shows how security is embedded within the organisational structure.

4 .2 .1 Skill diversity in the DevOps organisation
The “Shift Left” approach shifts many responsibilities to the DevOps team . This means
that in addition to the functional behaviour of the product, the team must also keep an
eye on many other qualitative aspects . The range of topics to be dealt with is thus broad-
ened considerably . It therefore requires a holistic view of the product and this is only
possible if the team is heterogeneous and diversified .

If there are specialists from many different fields in the team, the individual member has
fewer problems in formulating relevant threat scenarios for their field of expertise . This
also allows to gain a better understanding of why certain activities that are not immedi-
ately profitable can be extremely important . Overall, security awareness in the team
increases due to the diversity of skills .

4 .2 .2 Security roles in the organisation
In order for the gained security awareness to unfold its full effect, it must be supported by
a scalable system of security-relevant roles . In the Security Community, the benefits of
this scalability are undisputed . It can be implemented using a Security Champion model,
for example 12 .

Typically, Security Coaches and Security Officers are affiliated with the central security
organisation . The Security Officer has an overall view and oversees technical risks as well
as resulting business risks . His counterparts are the business decision makers who need
to understand and prioritise these risks . The representatives of the business act as risk
owners . So, the Security Officer helps in correctly classifying risks so that they can be cor-
rectly prioritised when developing a product or service .
The Security Coach primarily deals with threats and resulting risks or vulnerabilities,
depending on who he is talking to . He supports the Security Champions in the teams .
These are, in turn, permanent members of the DevOps teams and wear the security
hat in that specific team context . Together with the engineers in the team, the Security

12 Security Champions . Open Web Application Security Project, URL: owasp.org
Security Champions Playbook . Open Web Application Security Project, URL: owasp.org

21

https://www.owasp.org/index.php/Security_Champions
https://www.owasp.org/index.php/Security_Champions_Playbook

Champion investigates vulnerabilities, deals with technical threats and, most importantly,
makes all of this very clear to his team .

True to the “Shift Left” approach, responsibility for vulnerabilities and threats is concen-
trated directly in the DevOps team . The central security organisation provides support
and empowerment and controls the handling of security risks .

Because DevOps organisations are very dynamic, it can help if the aforementioned roles
are maintained in a central registry . This always makes it clear who has what role and
in what form they need to be informed . In any case, the definition of new roles should be
handled sparingly, as each additional role generates new interfaces and thus additional
coordination effort . In order to keep the organisation as lean as possible and to be able
to react quickly to changing requirements, it makes sense to introduce security roles
step by step . For example, in a first step, the roles of Security Officer and Security Coach
described above can be combined .

If a DevOps transformation is carried out in a large company, this usually gen-
erates a lot of uncertainty (in the entrepreneurial sense). In such an environ-
ment, a Security Champions model offers the central security organisation
the opportunity to become involved at an early stage (as a partial organisa-
tion) and to create the necessary structures.

Security Champions
Various, slightly different definitions circulate in the industry for the role of the Security
Champion . There is agreement, however, that he should primarily be the contact person
in the team for everything to do with security . In this function he promotes awareness .
Security Champions help to identify threats and vulnerabilities, make them transparent,
and ensure that they are addressed .

Fig . 5 | Organisational arrangement of security roles

Engineer

Security
Champion

Engineer

Security
Champion

Engineer

Security
Champion

Security Officer

Security Coach

Central Security Department Business

Business Representatives

DevOps Team #1 DevOps Team #2 DevOps Team #…

22

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

However, the responsibility for the security of a product should not lie solely with the
Security Champion, but with the team and the organisation as a whole . It’s also not
intended that the Champion will tackle all security issues alone . Rather, he does this in
constant interaction with his team, his Security Coach, but also with other Security
Champions (see below: Security Community) .

When exchanging ideas with his Security Coach, the Champion specifically benefits from
his know-how . In return, the Coach can also get an idea of the (security) situation in
the team or project . Thus, the Security Champion enables a consolidated, team-oriented
view that reflects the concrete needs .

At Swisscom, the following has been shown in practice: for the acceptance
and thus the success of a Security Champion model in an enterprise context,
it is important that the Security Champion is not only integrated into
a DevOps team, but also speaks their technical language. Moreover, when
different teams work on a common product, the higher-level security view
must not be neglected. Because each team usually develops a part of the
final product, the overall view can otherwise be lost. That’s why it’s impor-
tant to nominate a Champion at the business level as well. This «Champion
of Champions» keeps an eye on the architecture and the interaction of the
different teams regarding security.

The larger the organisation, the less it makes sense for the Security Champion
to become an actual security specialist on a technical level. To ensure that
the necessary know-how nevertheless flows into the end product in a large
company, the role of the Champion can be distributed among several
people within a product team.

Fig . 6 | The Security Champion of Champions keeps track of larger products .

Engineer

Security
Champion

Engineer

Security
Champion

Engineer

Security
Champion

Security Officer

Security Coach

Central Security Department Business

Business Representatives

Champion of Champions

DevOps Team #1 DevOps Team #2 DevOps Team #…

23

The appointment of Security Champions can lead to tensions. This happens
especially when no one in the DevOps team wants to voluntarily slip into
this role. Often a member then takes the plunge – or he is pushed into the role.
In such cases it takes much prudence and pragmatism on all sides for the
“champion against his will” to feel comfortable in his role.

Significantly: with the nomination of the Security Champions, the work
is done neither for the business nor for the central security organisation. In
order for Champions to be able to play their role, it is necessary to ensure
that they are also given the necessary resources (time, money, decision-
making authority). It is also important to ensure that they are given the
necessary knowledge to enable them to take responsibility for security as
part of a team.

But you have to be clear: at the corporate level, the responsibility for security
risks and the associated measures always lies with the body that makes
the final decision about a product or service. DevOps delegates a large part of
the responsibility and thus also the decision-making authority to the teams.
However, the security organisation must support the teams via the Security
Champion model. And: It must have the competence to intervene and pull
the rip cord when safety is grossly neglected.

Security Coaches
The task of the Security Coaches is primarily to enable the Security Champions to do
their job .

This point must not be underestimated. If a Security Champion lacks
know-how, this leads to additional work for the Security Coaches. If the
know-how hiatus remains unnoticed, security blind spots will occur,
leading to undetected (and therefore unpredictable) security vulnerabilities
in the worst case.

The Security Coach should be available in an advisory capacity to the Security Champions
in their daily work . They should recognise, bundle and serve synergies between the needs
of several teams . In the case of critical security issues, the Coach can provide the Champion
and the project with in-depth support, if necessary, also in terms of content . For example,
he can help the Champion with security audits .

The Security Coach is typically the contact person for several teams . He does not concen-
trate on implementation-technical specifics . Rather, he also helps with the compilation

24

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

of the relevant framework conditions, reviews of architectural adaptations and the
implementation of a meaningful threat-modelling process .

A Security Coach is particularly effective if he can refer directly to precisely fitting solution
modules, procedures or sample implementations for a set of given security requirements .
Ideally, he can use a searchable catalogue that links requirements with possible solution
variants . By the way, the Security Champion can also profit from such a catalogue . If it is
freely available to the DevOps teams, they will be able to find the best solution for them-
selves, while at the same time meeting all security requirements .

It is also the task of the Security Coach to make transparent technical security risks,
which were identified in dialogue with “his” Security Champions . If necessary, he must
ensure that all stakeholders understand these risks .

Security Officer
Depending on the size of the organisation, additional security roles can be introduced
if needed . Especially in complex and nested organisations, it makes sense to introduce
additional levels of abstraction .

The Security Officer is linked to the business stakeholders and has an overall view of the
various products and their interaction . This expanded view allows him to better assess
where major risks lurk and how the various elements, teams and departments interact .
The Security Officer is therefore mainly concerned with security risks applied to a business
context . Thanks to his view of the business, he can identify both technical and business
risks and communicate them to the relevant authorities . The Security Officer assists in
prioritising mitigation measures .

The Security Officer regularly communicates with the Security Coaches in his domain of
responsibility . Important information is shared, and the strategic orientation is defined
together .

Security Community
If new decentralised security roles are created, it is advisable to link the know-how of the
role owners and thus enable so-called matrix communication . This means that there’s
only one Security Champion role in a team but all Security Champions have the opportu-
nity to exchange ideas with professional peers within the Security Community .

This exchange of experience is particularly important in security . In order to promote and
maintain such exchange, it can make sense to set up a Security Guild . It ensures that
community members support each other and that solutions to security problems can also
be discussed, challenged and worked out together .

25

Experience has shown that many aspects faced by a Security Champion are also relevant
for other teams . Therefore, the solutions developed can also be reused by other teams .
If experiences and solutions are shared and developed within a Security Guild, the secu-
rity maturity of the whole company increases . This in turn relieves the central security
organisation .

At Swisscom, the Security Guild was implemented as follows: all Security
Champions and Coaches meet several times a year to work together on
security issues. Workshops, training courses and events are organised regu-
larly to increase know-how, promote exchange and motivation. These in-
clude, for example, the annual «Capture the Flag» 13 hackathon. There, par-
ticipants have the opportunity to solve security challenges in a playful way
and on the basis of practical examples. The Security Guild also maintains a
chat, which enables and accelerates exchange.

4.3 Security in planning activities

“Everything as Code” is one of the central principles of DevOps . However, it should not be
forgotten that code cannot be written without preparation and careful consideration .
In principle, security activities should already be considered in the abstract phases “require-
ments gathering” and “architecture & design” of the software development lifecycle .

Central to this chapter

People Process Technology

Consideration of security
requirements

Create understanding of
how iterative planning,
typical in an agile environ-
ment, affects security

Make available efficient
and iteratively applicable
processes for identifying
threats and risks

Support with tools, where
possible, to version, share
and annotate information

13 CTF? WTF?, CTFtime team, URL: ctftime.org

26

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

http://ctftime.org

4 .3 .1 Define security requirements
In any case, the following decisive sources have an influence on the catalogue of require-
ments for product development:
• Legal provisions regarding the information processed (e .g . the Swiss Telecommunications

or Data Protection Act)
• The compliance to be fulfilled (e .g . with the circular of the Swiss Financial Market

Supervisory Authority Finma or with ISO/IEC 27001)
• Handling of data and information according to internal data classification and specifica-

tions and, depending on the case, customer requirements

In an enterprise context, these sources of requirements are business-critical . An infringe-
ment can have serious consequences – from fines and damage to reputation to the loss of
trade secrets and thus the foundation of a business .

Once the catalogue of requirements has been thought through, it must be communicat-
ed to all parties involved as the basis for the complete product and its architecture,
implementation and deployment . Of course, it must also be ensured that it is adapted
when the use of the product is extended to new areas .

4 .3 .2 Threat modelling
To be able to adequately protect the processed information, the technical solution must
be armed against attacks . Threat modelling makes it possible to identify possible forms of
attack to which the product is exposed .

If threat modelling is based on a systematic approach (such as STRIDE 14), additional
aspects such as traceability and reproducibility can be considered . It often makes sense
to supplement and refine the basic approach with empirical values .

The authors of this booklet believe that threat modelling offers the greatest
benefit for the security of a product. However, its consistent implementa-
tion poses many challenges and requires a high degree of security awareness
among all parties involved. Particularly in view of the diversity of activities
in a large company, ensuring the consistent quality of threat models becomes
a Herculean task. Consistent threat modelling can therefore be understood
as a quality and maturity characteristic of an organisation.

14 STRIDE is an acronym and stands for the 6 threat classes Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service and Elevation of Privilege; STRIDE was originally founded by Microsoft employees .

27

Results of a threat model
The profitable result of a threat model is not primarily the threats it works out . Although
they are important for traceability, mitigations and measures derived from them as well
as the test and detection scenarios are more valuable .

The choice of the mitigation to be applied shall be made in descending order of importance:

• Threats should be avoided by adapting the architecture if possible .
• If the architecture cannot be adapted, the technical mitigation should be implemented

with a standard solution if possible .
• If no standard solution is available, a custom-made solution should at least be checked

by a specialist .
• If a technical solution is also impossible, the (remaining) vulnerability must be docu-

mented and communicated as a risk .

Test and detection scenarios can be defined based on the selected mitigation .
All results obtained in the threat model influence the security activities in subsequent
phases of the SDLC:

Fig . 7 | A threat model influences all other activities in a SDLC

PLAN
Sec. Requirements

Securable Tech.
Threat Modeling

BUILD
Secure Coding/

Config.
Sec. Solutions

DEPLOY
Ensure integrity
Secrets Mgmt.

RUN
Security Monitoring

Confidential
Feedback

Vuln. Mgmt.

TEST
Security Testing

Test Tuning

LEARN
Learn, Apply &

Share experiences

Inf uences

28

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

• Implementation: the technical mitigations are implemented directly or via integration
of a solution .

• Test/Integration: the implemented mitigations are tested automatically . Dedicated
security scanning tools and services can be used for this . If necessary, they are aligned
more specifically to the product with the findings from threat models .

• Deployment: threats that occur during software distribution, configuration, or with
regard to confidential information such as passwords, private keys or tokens that are
required during runtime, can be addressed and monitored early with appropriate
technical mitigations .

• Operations: for attacks to be detected during runtime, two important prerequisites
must be met . On the one hand, the identified detection scenarios must be planned
and implemented . On the other hand, it must be ensured that the product aggregates
the necessary information (like logs and other information sources) on a central plat-
form .

Managing threat modelling documentation
In practice, there are several approaches to managing threat modelling documentation .
They differ essentially in the way they are handled:

• With a central threat model, the entire team works on the same centrally stored
documentation . When implementing individual features, the central threat model
must be referenced here .

• With the distributed threat model, newly emerging threats and the associated miti-
gations become part of the corresponding work package (feature, ticket, user story,
etc .) . Therefore, threats are specified and implemented directly in that specific context .

Both approaches have specific advantages and disadvantages, depending on who works
with them and at which level . They also provide a somewhat different view .

A centralised threat model allows quick orientation in a product context . This makes it
easy to identify synergy potentials . However, it causes cognitive effort on the part of the
DevOps Engineer when implementing individual features, user stories or tasks . He must
then first select the points relevant to him from the whole . In addition, an isolated threat
model that is detached from the actual product can quickly become asynchronous to the
product . Therefore, it is often time-consuming to work with it and keep it up-to-date .

The distributed threat model is closer to the DevOps Engineer and isolates the relevant
part for each feature . Because a ticket is already available as a working basis, the distrib-
uted model is easier to maintain . Conversely, additional effort is required to obtain a com-
plete overview of the threats and mitigations relevant to a product . Then, all the indi-
vidual pieces must first be assembled .

29

Depending on the point of view one wants to gain, both approaches cause additional
effort . In order for the handling of the model, its maintenance and follow-up activities to
take place in an orderly and easy manner, approaches should be described and mapped
to each other in a simple and useful threat-modelling process .

DevOps and threat modelling
Threat modelling is critical to the security of a product throughout its lifecycle . However,
clean integration into the development process is demanding . There are also different
approaches for this .

Either way, threats must always be identified when planning an expansion to architecture .
In order to do this, it is necessary for a person to be able to put himself in the shoes of
an attacker . This is difficult because one must slip from one’s systematic-constructive
attitude (as developer, operator or DevOps Engineer) into the creative-destructive role
of an attacker . This is often the biggest challenge when a DevOps team has to develop a
threat model themselves .

Alternatively, you can have threats generated automatically by a tool . However, the results
often lack the necessary specificity to the product context . Therefore, many of the ge-
neric threats are oftentimes considered inapplicable by the users of the tools . As a result,
the results of the tool are generally analysed less precisely, and their effect is again lost .

Ultimately, the quality of a threat model benefits most when an experienced threat mod-
eller supports the development team . However, this approach often leads to scaling
problems . In the enterprise context, in particular, security experts often lack a technical
or thematic deepness of understanding of the product . That is why bottlenecks arise
here that have to be dealt with .

To close these gaps, a continuous and simple threat modelling process is necessary . It
should create the necessary interfaces, for example to the following steps in the product
product development lifecycle and ensure that those involved can work together without
friction losses . For example, an experienced threat modeller with little knowledge of
the product should be able to support a team that, in turn, has little knowledge of security
threats .

Because DevOps is an iterative concept, the architecture of a product can be
changed with each new user story or product feature. Therefore, it is not
practicable to create an initial threat model and reference it over a longer
period of time without maintaining it.

30

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

Instead, care should be taken to ensure that the model can be processed
both as a whole and in the form of individual, specific sections. The former is
important to get a holistic security view, and the latter to address threats
accurately. The constant change of the threat model over the lifecycle of a
product does not make its maintenance any easier.

4.4 Technical security activities

Technical security activities are those steps that are either directly technically feasible or
which directly influence the implementation of a product .

4 .4 .1 Security solutions
With the adoption of the “Shift Left” principle, DevOps teams are not only entrusted with
security topics – which are a mammoth task in themselves . There are many aspects to it,
such as stability, change management, operational monitoring and so on . It must not be
forgotten that all these topics, just like security, need to be reflected in the entire product
life cycle .

So, the responsibility given to the team is enormous . If adequate support is lacking,
mistakes with serious consequences can easily occur . This is where the central security
organisation comes in . It can provide the necessary expert knowledge by providing
easily, scalable and configurable security solutions .

Central to this chapter

People Process Technology

The team must know and
understand areas of
application of technical
solutions

Discovered vulnerabilities
need to be tracked and it
needs to be clear who is
responsible for them

Technical support is re-
quired for integration,
set-up and provision of
security solutions

Security solutions should
be easy to integrate

31

Ready-to-use solutions
To maintain or increase the security level in the company, DevOps teams should be
provided with a catalogue of ready-to-use solutions, patterns and reference implemen-
tations . Appropriate technical integrations for solutions can be offered and expanded
via Inner Source (an intra-organisational open source approach) . That way, teams can
contribute and extend integrations if required .

In order to keep the solutions catalogue standardized and clear, content control of the
catalogue should remain in the hands of security specialists . They control the portfolio
based on security risks and user feedback . The goal must be to make the use and integra-
tion of solutions as simple and uncomplicated as possible .

It has proven useful to centrally develop and operate generic security solutions
from an organisational perspective by a separate DevOps team. As part of
Swisscom’s central security organisation, the DevSecOps Tooling Competence
Centre takes over this task. The goal of such a set-up must be to bring the
specific security expert knowledge into product deployment pipelines in as
automated ways as possible.

It should be noted that this team must also perform the usual DevOps
tasks such as support and documentation. Correct integration into the target
systems and availability of services is crucial, especially when offering
Security Solutions.

In order to keep an overview of the catalogue and to identify relevant security solutions,
a threat model can once again come to the rescue . This means that relevant security
solutions can be referenced directly from the threat model instead of requirements miti-
gating certain threats of a product . This not only helps the DevOps team because they
don’t have to translate security requirements and develop their own solutions, but also
the Security Coaches and Security Officers . They can then be sure that the centrally of-
fered and professionally operated/maintained service is waterproof .

Some examples of security solutions
The list of security solutions that can be offered through a catalogue is long . Some exam-
ples based on the well-known STRIDE method for threat identification:

• Authentication: (multifactor) authentication as a service that can be integrated into
an application

• Integrity: Public Key Infrastructure (PKI) as automated service to enable signing and
encryption of artefacts and user data

32

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

• Traceability: logging solutions that allow for security monitoring
• Confidentiality: Libraries and services for encrypting and accessing sensitive informa-

tion, such as operational secrets (passwords, SSH keys, certificates, etc .)
• Availability: Libraries and services that can detect and block attacks at the application

and network levels
• Authorisation: Identity management solutions whose integration allows easy authori-

sation at the application level

4 .4 .2 Automated security testing
Automated verification of source code and products forms the core of DevOps . Automated
tests make it possible to quickly detect and eliminate errors . In other words: the earlier
a defect is discovered, the easier it can be remedied, and the less effort is required .

Security is no exception to this . On the contrary – completely automated deployment
pipelines (including implicit security review and clearance) make it possible to make
security aspects visible during implementation . The automation of security testing is there-
fore not only a quality check, but also an instrument for increasing security awareness .
Some preliminary work is needed to make full use of all advantages . For example, security
testing services must be provided that meet the needs of DevOps teams in the context of
automation . These include, among other things:

• Simple and easy technical integration of the security testing solution into
deployment pipelines

• No slowdown of the build (test performance)
• Minimal onboarding effort to ensure high-quality results

Anyone who follows these principles can improve the acceptance of security testing
services . This in turn facilitates the enforcement of a set of required security services .

It is repeatedly the case that individual DevOps team members attach less
importance to security. Often, they are also critical of security tools and –
sometimes – don’t hesitate to let others know.

In order to avoid such frustration being aimed at security, a suitable support
point is needed. It’s supposed to be a point of contact that helps with prob-
lems related to integration or the use of security tooling. Users can also reach
out for security-related questions like detected vulnerabilities that are not
well understood. At Swisscom, the DevSecOps Tooling Competence Centre
again takes over this task. This multidisciplinary team expands and operates
the security tools. At the same time, it is a contact point for users and also
receives feedback, which in turn flows into existing or new solutions.

33

Requirements for security testing tools
At the heart of automation are the tools that perform the tests at the end . Some basic
aspects need to be taken into account when selecting them:

• Future viability: Needs and requirements change quickly, especially in a DevOps organi-
sation . Therefore, a tool must be flexibly integrable and addressable in different ways .
This can be achieved if all work steps can be automated via APIs . Ideally, the security
tool is developed according to an API-first approach .

• User orientation: The tool should satisfy the main user groups, which are:
 – The DevOps teams: They are technically on the move and therefore need to know
their core technologies are supported . The tool is also required to be extensible
as such to support further technical development .

 – Security Champions and Coaches: They help the teams to incorporate security into
the product . Therefore, the tool should offer the possibility to aggregate defects in
such a way that areas can be identified in which the team still needs support .

• Multitenancy: In large companies in particular, it is interesting to evaluate test results
by business area . This may, for example, be due to the fact that areas are differently
critical for the organisation . Alternatively, a tool may be required to provide an overview
of the areas in which security investments should still be made . A tool should support
such specific considerations .

In service-oriented environments in particular, many different technologies are often
used on a daily basis . Their support in the market often varies greatly . Often, legacy
services are maintained in outdated programming languages while more recent ser-
vices are developed using techniques so new that hardly anyone knows about them .
This diversity can be met in different ways . Either one tool or one service per technology or
programming language is provided, or you will find a product on the market that covers
the entire spectrum . Either way: In the enterprise environment, the 80-20 rule is to be fol-
lowed here, controlled by the criticality of the products to be scanned .

Test scope
Automated security tests can be used to examine various aspects . In practice, at least the
following cases can be distinguished:

• Self-developed source code: If a product is developed in-house, the source code can be
checked . Vulnerabilities can thus be addressed directly and mitigated or removed .

• Third-party libraries: Almost all software is based at some point on software artefacts
which stem at some point from a third party . With open source libraries, for example,
any responsibility is often transferred to the user . All the more reason for him to be
informed about all known vulnerabilities .

34

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

• Infrastructure: Every software bases on some kind of infrastructure . This foundation
must be securely configured and kept up to date . Vulnerabilities such as unnecessarily
exposed communication ports, unsafe cryptography algorithms or missing security
headers must be avoided .

Test types
There are types of security tests that can and often should be used in a complementary
manner . Even if the test scopes of individual types overlap, other vulnerabilities can
still be found . The most common security testing types are described below . They can be
more specific to the product under test, both for themselves and for each other, if infor-
mation from the threat model is used .

• Static Application Security Testing (SAST): The static analysis examines the source
code itself . Depending on the technology, keywords or combinations of them are
searched for that are known to lead to insecure behaviour . Advanced analysis tools
build graph models from source code, which are then examined for specific patterns .
In general, SAST solutions are efficient because they provide a very deep insight into the
source code . Their major disadvantage, however, is their susceptibility to false posi-
tives, which often have to be processed manually . Furthermore, SAST tools often lag be-
hind the further development of programming languages and frameworks . Since SAST
does not take the application context into account, logical errors are often not detected .

• Dynamic Application Security Testing (DAST): With dynamic analysis, the software is
executed in a protected environment and called up with security-relevant inputs . Inputs
can either be formatted sensibly or generated randomly (so-called fuzzing) . Depending
on how the application behaves or what it returns, vulnerabilities can be identified .
DAST tools generate fewer false positives . Because the application context runs along
with it, they are also better suited for detecting logical errors . Due to the limited insight
into the software, however, only directly exposed vulnerabilities are discovered . Of
course, the tools can be adapted to the target applications to a certain extent . However,
it remains difficult to realistically simulate a creative attacker .

• Interactive Application Security Testing (IAST): The “Interactive” in IAST refers to the
interaction between the two approaches already presented . This is an attempt to bring
together the positive aspects of SAST and DAST . For example, IAST allows you to esti-
mate how a certain input is processed in a data flow . This reduces the proportion of false
positives . However, IAST solutions are often very technology-specific .

All three concepts are dedicated application security solutions .

35

When a SAST solution was introduced as a self-service for the teams, Swisscom
was able to gain the following valuable experience: The DevOps engineers,
often with little know-how about SAST and security, had some of their com-
plete source code scanned, including test directories, fixture data, etc. This
meant that the individual scan took a lot of time (several hours) and therefore
could not be integrated into automatic build processes. Consequently, these
scans were only performed manually and sporadically.
The unlimited “tipping in” of code also presented users with a huge number
of defects – in most cases false positives. As a result, the interpretation of
the scan results became a proverbial search for the needle in the haystack.

Accordingly, acceptance of the new SAST service fell massively. Because of
the negative experiences, many users developed a real aversion to the ser-
vice and refused to continue using it.

The most important finding from this situation is that a SAST tool cannot
do without specific information about the target object (context). In order to
get a grip on this, two primary positions were used:

• The complete onboarding process has been redesigned.
• The target audience was readjusted, primarily to be able to restart with-

out reservations.

In addition, the service was relaunched under a different name. Thus, the
negative image could be cast off and restarted with the intrinsically good tool.

Today, the service is provided by a specialised SAST team with the appropri-
ate know-how. DevOps teams that newly register their product for the SAST
service go through three steps of onboarding:

• In an initial threat model, data flows are analysed, and irrelevant code
parts are identified.

• The SAST team then tailors the scan specifically to the product to eliminate
false positives, detect false negatives and optimise throughput time.

• After the first scan, the defects found are discussed in a fact-finding meet-
ing. There the teams also receive support, which makes it easier for them
to repair the defects and avoid them in the future.

These changes to the process reduced the number of false positives by
almost 95% of false positives. The scan throughput time has been reduced
from several hours to a few minutes.

36

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

With the short running time and the high relevance of the findings, the
scans can now be automated. All in all, this has led to a noticeable improve-
ment in user acceptance.

In principle, security aspects can also be tested without a dedicated security test environ-
ment . For example, input validation can be covered directly by automated unit tests .

It is obvious that the number of vulnerabilities introduced by third party libraries should
be kept as small as possible . To achieve this, the code can first be searched with a kind
of a SAST approach for embedded external dependencies . With the results obtained, the
so-called bill of material, relevant vulnerabilities can then be identified via the correla-
tion of CPE (Common Platform Enumeration) and CVE (Common Vulnerability Enumera-
tion) identifiers .

Another approach, which can be used in addition, executes the scan only at the end of the
deployment pipeline on the assembled artefact . To get information about included third
party libraries, the artefact can be unpacked . This is a different approach to obtain a bill of
material, representing an inventory of software components and versions the artefact
contains, which can be used to correlate the vulnerabilities found . The inventory can
be persisted for that artefact, so that vulnerability correlations are also possible at a later
point in time . This process is described in 4.6.1 under Security Monitoring . It is called
Artefact Vulnerability Management (AVM) or sometimes also Software Component
Analysis (SCA) .

Various tools are used to test the infrastructure for secure configuration (sometimes also
called “hardening”) . These include nmap 15, nessus 16, sslscan 17 and the like . These tools can
be automated either individually, via command line integration or as part of established
test frameworks . Such frameworks can, for example, be orchestrated with the abstrac-
tion language “Gherkin” 18, which has established itself in end-to-end testing . Gherkin is a
syntax used in Behaviour Driven Development (BDD) . It should enable non-technicians to
read and write test cases by formulating scenarios using prose text (see Fig. 8 | Example of
a test case in Gherkin syntax) .

In principle, the infrastructure test cases for this approach should be derived directly
from the threat model or even generated automatically . In the community, this is usually
referred to as Security as Code . Of course, this fits nicely into the DevOps requirement
“Everything as Code” .

15 Nmap by Gordon Fyodor Lyon, URL: nmap.org
16 Nessus (Software) . Wikipedia, URL: en.wikipedia.org/wiki/Nessus_(Software)
17 sslscan, rbsec, URL: github.com/rbsec/sslscan
18 Gherkin Syntax, Cucumber Community, URL: docs.cucumber.io/gherkin

37

http://nmap.org
https://en.wikipedia.org/wiki/Nessus_(software)
https://github.com/rbsec/sslscan
https://docs.cucumber.io/gherkin/

There are several automated security testing methods . It is important to understand
that each of them looks at the application from a different perspective . A single method
therefore provides only an inadequate view of the application . Optimum security is
achieved by combining various automatic testing methods and concluding with penetra-
tion testing . Then you can be sure that the creativity of an attacker will also influence
the result .

4 .4 .3 Manual security testing
Many technical security tests can be automated . However, their quality depends on how
well the automation technology performs and how well they are maintained . Thus, the
results of automated tests provide a good picture of basic security . However, they cannot
represent the creativity of an attacker who is able to put information into context and
to interpret the resulting picture .

Penetration testing
Therefore, automated tests cannot replace periodic technical penetration tests . It does
not matter whether the tests are white, grey or black box tests 19 carried out by trained
specialists . However, it is optimal if the software has already been tested automatically
before the penetration test and the vulnerabilities found have been eliminated . This
will allow testers to better focus on complex vulnerabilities and less be distracted by
emerging «simple» vulnerabilities .

19 For white-box testing, the tester receives source code and configuration of a product to be tested . For grey box
testing, only part of the information is disclosed . For black box testing, the tester has no prior information available .

Fig . 8 | Example of a test case in Gherkin syntax (Source: automationpanda.com)

Feature: Google Searching
 As a web surfer, I want to search Google, so that I can
 learn new things.

Scenario: Simple Google search
 Given a web browser is on the Google page
 When the search phrase “panda” is entered
 Then results for “panda” are shown

38

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

https://automationpanda.com/2017/01/27/bdd-101-gherkin-by-example/

Coordinated audits
Periodic audits are primarily useful for critical and exposed products . True to the DevOps
approach, a dedicated product environment can be instantiated for penetration testing .
The testers should be provided with as much product information as possible . This enables
them to try out or exclude even advanced attack scenarios from the outset . The aim of
the action should be to achieve effective results as efficiently as possible (corresponds to
a white/grey box test) . In this set-up, defensive attitudes do not help to realistically test
and assess product quality .

Red Teaming
While penetration testing is about finding the vulnerabilities of a particular application,
Red Teaming 20 focuses on exploiting a vulnerability to penetrate a corporate network as
widely and unobtrusively as possible . Red Teams proceed under realistic conditions . In
other words, they have little internal information at their disposal and develop it in the
course of their action .

The Red Team in the attacker role is the opponent of the Blue Team in the defender role .
The Blue Team describes all defensive and reactive security measures mobilised by a
company . In the broadest sense, in addition to security teams participating in attack re-
sponse (see chapter 4.6), DevOps teams are also part of the Blue Team .

The concept of Red Teaming in itself remains unchanged, even in a DevOps organisation .
The differences lie primarily in the potential response time and in the administrative
impact of an attack . Since with DevOps a product is developed and operated simultane-
ously by the same team, anomalies in data traffic, for example, can be tackled much
more quickly and easily (see chapter 4.6) .

Concluding Red Team publications are often entertaining and easy to read “War Stories”,
which nevertheless offer a lot of technical content . They allow the DevOps teams to di-
rectly build a reference and make comparisons to their own product . In terms of security
awareness, such a reconditioning is therefore very efficient and valuable . Of course,
systematic measures can also be derived from the Red Team actions .

Red Teaming has been in operation at Swisscom since 2015. Each year one
to two attack simulations are carried out by a changing team. The spectrum
of attacks ranges from social engineering and phishing to active takeovers of
Swisscom systems using malware. All this happens naturally, without caus-
ing actual damage. The aim of these attacks is, on the one hand, to identify

20 Red team, Wikipedia: URL: en.wikipedia.org/wiki/Red_team

39

https://en.wikipedia.org/wiki/Red_team

weaknesses and risks before real hackers exploit them. On the other hand,
the Blue Team should be confronted with realistic scenarios in order to
identify weaknesses in capabilities and processes.

As it turned out, the biggest challenge is to get the Red Team’s active employ-
ees out of their daily business so that they can take the necessary time to
hack. Since the Blue Team is also expanding its detection skills and constantly
learning new ones, the task for the Red Team becomes more and more diffi-
cult over time.
As described, internal processing and communication of the so-called Red
Team Cases has proven to be very valuable. Employees in all business areas
and at all levels feel specifically addressed by the prepared stories and reports.
This in turn leads to adjustments in their environment, which
benefit security.

4.5 Deployment pipeline security

Because one of the core capabilities of DevOps organisations is automation, the integrity
and confidentiality of automation services must always be maintained . The following
systems can be counted as automation services:

Central to this chapter

People Process Technology

The team knows the threat
situation regarding the
central Deployment
Pipeline systems (i .e . the
“factory”)

There is an awareness of
the risks associated with
own assets and those of
partner teams using the
same platform

There is a separation of
powers on a need-to-know
basis

The Deployment Pipeline
supports modular exten-
sion with components for
quality inspection

Central systems are
adequately secured

40

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

• Workplace – the system where code is written
• Version Control System (VCS) – where the code is stored and versioned
• Continuous Integration/Continuous Deployment (CI/CD) System – where code is

processed, and artefacts are assembled
• Scanning Services – code and artefacts are tested
• Artefact Repositories – here, files for software packages and more are stored
• Runtime environments – are required for value creation by actually running the

software product

This chapter deals mainly with interaction with external partners . This is important
because the increasingly central role of the deployment pipeline enables interfaces to
partner systems and thus new attack vectors .

It is part of the DevOps principle that the software and its configuration are stored separate-
ly . In other words: in addition to the software, its configuration must also be integrated
into the production environment . Because configurations often contain sensitive param-
eters that are used for data exchange with third-party systems, this communication
must also be secured . In most cases, this is done using certificates and authentication
secrets . With DevOps, new requirements arise here .

The influence of “Everything as Code”
The maxim “Everything as Code” means for DevOps organisations that all tests, builds,
repositories and deployments are described by code . This has enormous implications:
an accidental adjustment at the wrong place can cause tests to fail . In the worst case, a
malicious change to the code can exfiltrate secrets (like passwords, keys, etc . or even
of a business nature) . Reading access to a codebase alone can provide attackers with a
comprehensive view of the product being operated . This makes it much easier for them
to search for weak points in a software product and weaponize for an upcoming attack .

Fig . 9 | Abstract representation of a deployment pipeline with the various components that need to be saved .

Workplace
Version Control

System
Artefact store

Runtime

Scanning Services

Continuous Int./
Continuous Depl.

41

The concentration of logic in the code eliminates segmentation and thus manual control
mechanisms . In a transformation phase towards DevOps, it is particularly important to
replace quality controls with automated measures . They are stored, again as code, specifi-
cally adapted to the product . This creates a kind of logical redundancy between the code
and tests that helps to preserve integrity .

As a result of the translation of (almost) all aspects into code, the value or criticality of
the code repository, i .e . the Version Control System (VCS), multiplies . If this system is com-
promised, it has far-reaching consequences .

Another critical component is the Artefact Repository . Here the challenges are compara-
ble to those of VCS . If artefacts can be modified or even compromised, entire production
platforms may be at risk .

For both systems, maintaining the integrity of managed assets is most important .
Unwanted changes to source code or artefacts can lead to fatal problems in production
environments . The second most important thing is confidentiality . The leakage of data
from a VCS or artefact repository can lead to the loss of secrets and other internal
information .

Of course, there are other threats related to “Everything as Code” . However, these are
rather specific for the technologies or processes used in each case .

Integrity and confidentiality of code and artefacts
To protect the integrity of source code, Git-based 21 VCS should enforce commit signing .
Technically, commits with unknown signatures must be rejected . This is the only way to
ensure that only authorised users can make code changes .

For artefacts, the integrity should be detectable with at least one checksum, i .e . a digit
sum across the entire artefact . A better solution, however, is to enforce a signature on
artefacts, too .

To protect confidentiality of internal information and secrets, technology is not the only
approach . For example, it is necessary to control access with suitable Identity & Access
Management (IAM) and, important, adequate processes . This ensures, for example, that
only the assets that are needed can be accessed . Excessive accesses should be detected
via monitoring and slowed down via throttling/rate limiting . Countermeasures can be IP
or account blocking to prevent possible attacks (more in chapter 4.6) .

21 Git has become the de-facto standard of versioning technologies for source code, Git, Git Community,
URL: git-scm.com

42

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

http://git-scm.com

But also the authors of code or system specifications are stressed . A consistently en-
forced clean coding specification can reduce the risk of leakage of operational secrets
(certificates, keys, passwords, etc .) . Secrets have no reason to be kept in a VCS, because
even after removing them from the finished code, they can still be found in old versions
(unless thoroughly removing a lot of information from the repository) . The same ap-
plies to secrets in artefacts .

Algorithms should also be protected if they are commercially viable innovations . They
should be regarded as assets . Completely segregated VCS are often justified in such cases .

Cooperation with partners and providers
Value-adding data or systems are primarily valuable to the owner . Because partners and
suppliers have less connection to these assets, they are often not particularly willing to
implement additional security measures . All the more reason for the need for contractually
regulated security precautions vis-à-vis all partners . On this basis, processes can be au-
dited, for example, or it can be checked whether agreements are being adhered to .

Because personnel changes can occur quite frequently and at short notice, the IAM process
used should enable fast onboarding . “Offboarding” should also not be neglected, for
example by ensuring that individual employees can be quickly denied access if necessary .

In a DevOps context, it is very advantageous if the good practices used are checked techni-
cally and fully automatically . For example, unsigned commits from external supplier staff
can be rejected . The same applies if suppliers push commits from employees who have not
registered with the customer . If one takes this concept a little further, automatically de-
tected security defects can also be returned directly to suppliers, as it is possible to clearly
identify who’s introduced what defect in the common source code base .

All in all, the examples show that cooperation with partners and suppliers must be well
thought out . The processes should allow errors to be corrected quickly . The contact per-
sons on both sides should be able to talk to each other on a technical level in order to avoid
misunderstandings, especially when it comes to security-related aspects of products .

Access to productive data and systems
The ultimate goal of a DevOps organisation should be to map its complete infrastructures
as code . That way, adjustments on runtime systems become an anti-pattern . Access to
productive systems is then only possible in exceptional cases, for example to understand
specific incidents and circumstances . Actually, such accesses would not be necessary ei-
ther, because problem cases should be traced and evaluated via clean logging or at least
reproduced in a non-productive environment .

43

Actions taken in the course of an extraordinary access to live systems can be recorded for
traceability . In the optimal case, a single system node would be directly replaced by a
new instance right after manual access in order to disfunctions due to unwanted manual
changes on single nodes .

From a security perspective, the benefits of an Infrastructure-as-Code approach are
great – to name just a few aspects:

• System hardening (secure configuration) can be verified by code analysis
• Adjustments to the system hardening can be clearly traced
• Instantiation of dedicated test environments identical to the production environment

is possible without additional effort, e .g . for penetration testing
• Systems that have potentially been weakened by manual actions can be replaced

immediately (also: Immutable Infrastructure)
• Production data is better protected because there is usually no manual access to

productive systems

A functioning IAM is also a prerequisite for the protection of data and systems . If identities
cannot be strictly assigned, accesses can no longer be assigned to trustworthy persons .
This also means that the traceability of actions can no longer be guaranteed . Another
challenge arises when it is not human users who access services, but technical accounts .

Management of secrets and certificates
Inevitably associated with DevOps is the issue of automated secrets management neces-
sary for systems to access other systems (e .g . databases or other services) . It has always
been best practice to replace secrets such as passwords from time to time . This reduces
the risk that attackers can gain access to an old password and thus illegally and anony-
mously view or even change data .

In an organisation with enterprise dimensions, many systems are accessed from auto-
mated processes . Therefore, a lot of effort was required if system administrators had to
periodically change all passwords manually . The manual password change could also
trigger operational problems whenever an accessing system still uses an old password
and suddenly no longer obtains the necessary access grant . This can happen if a password
is hardcoded in source code . This gives rise to further problems . Including, for example,
how to proceed if a system administrator who probably knows one or more service account
passwords leaves the company .

Another point in favour of automatic secret management is the shortened technical life-
cycle of runtime instances in a DevOps environment . By this point at the latest, manual
solutions definitely become impracticable . Secrets must then be rotated independently
of the product version and injected to the runtime setup . The same applies to (web) cer-
tificates and their respective counterparts, the private key .

44

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

Anyone who approaches these topics with a degree of automation worthy of DevOps and
nevertheless wants to guarantee an appropriate level of security will find various Secrets
Management solutions on the market . Some of them are available both as commercial
products and in the form of open source .

For the certificates, it is necessary to integrate a Public Key Infrastructure (PKI) that fits the
automation requirements . Here you must decide whether a free service is to be used
or whether the organisation is to set up its own PKI . In the latter case, the automation can
be addressed with the de facto standard Automated Certificate Management Environ-
ment (ACME) .

4.6 Productive operations and attack response

Security incidents happen – with or without DevOps . This unpleasant truth puts all
preventive security measures in a different light . It also shows that there is not only one
(preventive) or the other (reactive) side of security . Rather, the challenges extend over
the entire product life cycle .

In larger organisations, there are always areas that are a little less in focus with regard to
the implementation of security measures . They each have to get by with less support
than other areas . From this perspective, it is important to have simple interfaces and
procedures for collecting security-relevant logs and feedback . From the DevOps team’s
point of view, the processing and evaluation of data and feedback should also be as simple
and comprehensible as possible .
In an efficient product development cycle, all types of feedback should be reduced to a core
statement so that they can flow back into the preventive part of the SDLC . For example,
you can add hints for threats that have not been considered to a threat catalogue, which
can be used again during planning activities in threat modelling . In this way, the threat
catalogue and model are iteratively expanded with the aim of obtaining a picture as com-
plete as possible .

Central to this chapter

People Process Technology

Communication and
preparation of threat sce-
narios

Manage monitoring and
response processes

Ensure an organisation
that ensures responsive-
ness

Use of solutions to detect
attacks

45

User feedback
One of the principles of DevOps is to collect implicit (measurable) as well as explicit feed-
back from the users . Security-relevant feedback on a product, usually, must be treated
confidentially . It may also only be made accessible to a restricted circle of persons . Other-
wise, there is a risk that potential attackers could gain knowledge about existing vulner-
abilities and harm the company .

In order to prevent security assessments from being read in forums or social media,
legal and confidential channels must first be created through which vulnerabilities can
be reported . In addition, incentives must be created to encourage external security
researchers to give feedback at all . Incentives can also help to maintain the quality-bar
of feedback high .

Vulnerability management
In practice, it may be the case that new vulnerabilities are published for individual compo-
nents during their productive use as part of a product . The information can come from
sources inside or outside the organisation (see 4.4.2), such as the Common Vulnerability
Enumeration (CVE) . In order to be able to react quickly, such sources need to be constantly
monitored . The general procedure for dealing with vulnerabilities is formally described
by ISO Standard 30111 on “Vulnerability Handling Processes” .

DevOps enables new approaches here . On the one hand, it simplifies the exchange of affec-
ted components, since the complete application structure is described by source code . On
the other hand, fully automated tests help to quickly decide whether the functionality
of a product is still guaranteed after replacing a vulnerable component . Both aspects help
in rolling out new product versions quickly and with confidence that availability is not
degraded . For the entire vulnerability management process to run smoothly, a precise
inventory of products, software and included components must be available from which
it can be deduced which product instances are affected by vulnerabilities .

One way of dealing with vulnerabilities is to combine centralised and
decentralised organisational approaches: the DevOps teams are basically
responsible for the weak points and their elimination (decentralised).
They receive support from the central security organisation in the form of
specialised expertise. Security specialists can help in some kind of task
force structure, their support in eliminating critical vulnerabilities and thus
ensure short response times.

46

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

Bug bounty
An increasingly popular way to get feedback on security is to use bug bounty programmes .
They combine the confidential feedback channel with vulnerability management by
creating another source of information on vulnerabilities . In doing so, they implement
ISO standard 29174 on “Vulnerability Disclosure” .

Bug bounty programmes work roughly like this 22: A user reports a vulnerability he found
in a product to the operating company, including traceable documentation . If the vulner-
ability is confirmed, he will receive a reward if he commits himself to secrecy for a jointly
agreed period of time . The company uses this time to fix the vulnerability . This procedure
is also known among experts as the “Responsible Disclosure Model” .
In DevOps organisations of large companies, the underlying agility of a company creates
ongoing relevant security challenges . Therefore, the bug bounty programme is best run
from a central location . The prerequisite, however, is that the operators know the entire
attack surface of the organisation . This is given by the sum of the exposed products .

In order to process bug bounty reports efficiently, you need a complete and up-to-date
directory with the necessary information about products, associated roles and persons
(see also: “Alarm – and then?” under 4.6.1) . Keeping such a directory up-to-date, however,
is time-consuming because the products, responsibilities and contact persons are con-
stantly changing . In addition, it is recommended that the technical scope of the bug
bounty programme is precisely defined and documented for the general public . Docu-
mentation of this type then states exactly which applications and services a company
exposes to the Internet and for which of them bug bounty reports are accepted for .
The security researchers may then only search for vulnerabilities on these .

To cover the entire attack surface, the focus should also be expanded to include the
internal actors of the organisation . Mature organisations also provide internal users with
a confidential communication channel for security-relevant feedback .

Swisscom was one of the first companies in Switzerland to offer a bug bounty
programme 23. Since its introduction in 2015, the channel has proven its
worth in numerous cases. Vulnerabilities relevant to the general public are
published on the portal as “Security Advisories” and receive a CVE number
(Common Vulnerability Enumeration 24) for unambiguous identification.

22 The terms and conditions of bug bounty programmes may vary from company to company .
The definition given here corresponds to the general understanding .

23 Bug Bounty, Swisscom Ltd, URL: swisscom.ch
24 Common Vulnerabilities and Exposures, The MITRE Corporation, URL: cve.mitre.org

47

https://www.swisscom.ch/en/about/company/portrait/network/security/bug-bounty.html
https://cve.mitre.org

Swisscom has covered a learning distance in setting up the bug bounty pro-
gramme. For example, it was found that the security researchers had to
be supervised by equally specialised representatives of the internal security
organisation. This promotes good communication and ensures adequate
responses to the reports received. Since then, the relationship between the
security researchers and Swisscom has developed in such a way that there
are even joint public appearances.

4 .6 .1 Security monitoring
Security monitoring is generally understood to mean the monitoring of security-relevant
events . It is often forgotten that appropriate use or abuse case specifications are required
for a meaningful and product-specific evaluation . They describe what can go wrong in a
case of emergency and what information is needed to detect an attack . Although log data
and other sources for security event data can be evaluated generically, they often deliver
far too few specific results or even false positives .

Another component that needs to be monitored is the ecosystem in which a company or
product operates . However, when doing so, different levels of abstraction must be taken
into account .
Effective monitoring in a DevOps organisation also means that, in the event of a security
incident, all contact persons are defined from the outset . If this is the case, the DevOps
setup can play out its advantages: Because the communication channels within the teams
are short, reactive mitigations can be implemented efficiently .

Because orientation is particularly difficult in stressful situations, i .e . in emergencies or
crises, all scenarios and emergency plans must be practised in preparation . This reveals
weaknesses or even errors in the choreography of the parties involved (DevOps team,
participating security response teams, etc .) .
It is in the nature of security monitoring that incidents only become visible during or after
their occurrence . Therefore, an efficient DevSecOps organisation attaches importance
to a well-functioning communication between reactive and preventive actors . This makes
it possible to quickly translate the findings from the incidents into preventive measures .

Detection of known risks
One of the sources for security monitoring use cases is the threat model for the product .
Both mitigated and unmitigated threats can be formulated as monitoring use cases . This
allows the validation of the threat model on the one hand and the detection of security
relevant events on the other hand . The latter should be weighted much higher, since an
event becomes an alert and then an incident under the given conditions .

48

D
ev

Se
cO

ps
 |

D
ev

Se
cO

ps
 –

 s
ec

ur
it

y
in

 th
e

D
ev

O
ps

 c
on

te
xt

To be able to perform effective evaluations, there should be a “backwards calculation” from
the desired result, i .e . the monitoring use cases . This gives rise to the following questions:

• Which components in the product infrastructure must deliver data? These may
include: the Intrusion Detection System (IDS), the Reverse Proxy incl . Load Balancer
and Web Application Firewall (WAF), but also the infrastructure underneath the
application, like data storage, etc .

• Which data is required? Can they be accessed at all or are shared components in use?
• Which data does not bring any added value? A meaningful “signal-to-noise ratio” can

improve the quality of the end result .

From the point of view of security monitoring, it usually does not make sense to collect
highly detailed and verbose logs from all systems . Instead, you should save a little more
log data than you currently need, deviated from your security monitoring use cases . A
good start is to write logs that make transactions traceable across all components of a
system using a common identifier . For example, the identifier can be a random number
generated by the first component that “sees” an access .

Detection of anomalies
The shift-left approach creates exciting synergy potentials, especially in security . Thus,
security solutions such as Runtime Application Self Protection (RASP) frameworks that
could not be used efficiently due to personnel or organisational barriers can suddenly
become interesting .
Such self-defence frameworks are often found in the web environment . There they are
supposed to recognise and fend off attacks independently due to atypically changing
attributes . For example, an application can sound an alarm if it detects access to a honey
endpoint 27 . In another case, it may be suspicious if the agent identification suddenly
changes during a running session .

Of course, the fine-tuning of such RASP solutions depends heavily on the application code .
It is therefore worthwhile to attach great importance to their correct technical integra-
tion and the corresponding automated tests . RASP solutions can also be used as an addi-
tional source for security monitoring .

Alarm – and then?
If a (monitored and confirmed) security incident occurs, the previously implemented
countermeasures are ideally triggered immediately and automatically . In business-critical
products, however, such automation quickly reaches its limits because false positives
cannot be ruled out . Then it helps if manual and/or technical countermeasures can be taken
quickly thanks to the proximity to the DevOps team .

25 Honey endpoint: an endpoint that is not accessed during normal operation and whose purpose is to identify
attackers who scan the entire attack surface of a web application .

49

50

One possible manual countermeasure is to adapt the Web Application Firewall (WAF)
so that it allows hot patching . At best, a vulnerability can be shielded via WAF, and the
DevOps team gains the necessary time to cleanly correct the product itself .
A technical countermeasure would be, for example, the inclusion of a vulnerability exploit
in the automated test set of a product . This allows continuous testing of whether the vul-
nerability is (re)occurring due to code changes . Without such regression tests, the aware-
ness gained in connection with an incident usually goes up in smoke after some time .

A systematic inventory within the DevOps organisation is required to ensure that all nec-
essary information for such countermeasures is known in an emergency . The inventory
should contain the following information, which is permanently available to the Security
Operations Centre (SOC):

• List of members of the DevOps teams (technical contact persons)
• Product responsibilities (business contacts)
• Technologies (may contribute to faster mitigation)
• Product inventory (endpoints, test results etc .)
• Further information sources (VCS, Threat Model etc .)

When a routine analysis escalates into an incident, the Computer Security Incident
Response Team (CSIRT) takes action . It benefits from the fact that DevOps principles
basically supports forensic investigations into the causes of an incident and the damage
done . Thanks to the high level of automation and the accompanying logging of executed
steps, it is always possible to trace where, what and when changes were made to the
product, where it was exposed to the attackers and thus what made the attack possible
at all .

In order to avoid destroying data in the hectic rush that could have provided information
about the attack, those involved must be informed and trained right from the start . Basi-
cally, SOC and CSIRT are provided as internal, central specialised security services . They
complement and support the DevOps teams primarily through professional response
measures .

Swisscom’s Security Champions programme in particular has proven its worth
in the processing of security incidents. It leads on the one hand to the fact that
during the response to a security incident, the contact person on the side of
the DevOps team is already known from the outset. On the other hand, the
Security Champion has already built up a basic understanding of security ter-
minology through the training and awareness units he has completed. This
reduces friction in the interaction between CSIRT and DevOps team and also
helps in general communication.

51

5 Summary
Efficient security in a DevOps organisation is primarily characterised by the strong
integration of the various security activities . The better the individual steps are linked,
the more effectively security can be implemented . DevOps as an approach helps to
create the necessary conditions here . It tears down disturbing organisational barriers
(for example between development and operations) and brings together what
actually belongs together . This encourages a holistic view of the entire product life cycle .

The challenge, however, lies in sufficiently prioritising security as a topic . Because the
DevOps teams will never reach the same expertise as security professionals, the central,
supportive security organisation remains important for success . The motto must be:
“Make it easy to do the right thing” . In practice, this means: It should offer content, pro-
cesses and services in such a way that the simplest variant is also the most secure one .

Anyone who does not clearly set the priorities during a DevOps transformation risks los-
ing attention to security . To avoid this, the following points must be actively addressed:

• General awareness: with a training programme that provides the necessary visibility
of security topics .

• Intrinsic security: by making security as simple and accessible as possible, for example
with a set of solutions that can be adopted as-is  The elimination of process tollgates
can be compensated for by creating transparency through continuously testing for
security .

• Identity & Access Management: Mapping of all DevOps roles to ensure segregation of
authorisations and traceability of accesses  A classic separation of powers is omitted,
but the value of IAM as sovereignty over fine-grained access authorisations is increasing .

• Organisation: Security, with all its aspects and roles, should be anchored in the DevOps
organisation . To make it scalable, responsibilities must be transferred across the board,
i .e . to the teams .  However, it must always be clear who is responsible for risks and
vulnerabilities, and the right people must be found and addressed at all levels .

If the right measures are taken, DevOps and Security do not stand in the way of each other
but open up new possibilities for each other . In this way it can be possible to make the world
a somewhat safer and more predictable place, at least from a technical point of view .

52

D
ev

Se
cO

ps
 |

Su
m

m
ar

y

Swisscom has been implementing and applying these best practices since
mid-2016. As usual in agile environments, this is a constantly changing pro-
cess. It’s all «Do, Learn and Adapt».

So far, challenges have emerged, especially in the fields of automation and
culture. In the future, it is planned to further improve the maturity on all
three pillars People, Processes & Technology and thus reduce the level differ-
ence between pioneer and laggard teams.

It is also necessary to improve measurability in all areas in order to be able to
make data-driven decisions. One example is the combination of numbers on
security vulnerabilities and the security training certification level of a team.
In addition, data should be presented in a simple way and be available
quickly if required. In order to achieve the desired transparency, it is also nec-
essary to summarise relevant key figures on live dashboards.

53

6 Abbreviations
ACME Automated Certificate Management Environment

AVM Artefact Vulnerability Management

BDD Behaviour Driven Development

CALMS Culture, Automation, Lean, Measurement, Sharing

CI/CD Continuous Integration and Continuous Delivery or Deployment

CPE Common Platform Enumeration

CSIRT Computer Security Incident Response Team

CSSLP Certified Secure Software Lifecycle Professional

CVE Common Vulnerability Enumeration

DAST Dynamic Application Security Testing

DevOps
Artificial term, composed of Development (Dev) and Operations (Ops);
stands for the complete product life cycle

DevSecOps
See DevOps; Security (Sec) has been added to give more weight
to the issue

IAM Identity & access management

IAST Interactive Application Security Testing

IDS Intrusion Detection System

OWASP Open Web Application Security Project

PKI Public Key Infrastructure

RASP Runtime Application Self-Protection

54

D
ev

Se
cO

ps
 |

Ab
br

ev
ia

ti
on

s

SAFe Scaled Agile Framework

SAST Static Application Security Testing

SDLC Software Development Lifecycle

SOC Security Operations Centre

STRIDE
Stands for the six threat classes: Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service and Elevation of Privilege

VCS Version Control System

VUCA Volatility, Uncertainty, Complexity, Ambiguity

WAF Web Application Firewall

55

7 Index
Artefact Repositories 40, 42
Attack response 45
Bug Bounty 46
Certificates 44
Computer Security Incident Response Team 51
Coordinated audits 38
Deployment Pipeline Security 40
Detection of risks and anomalies 48 f .
DevOps, definition 9
DevOps, influence on teams 13
DevOps, IBM reference model 10
DevOps, scaling 12
Dynamic Application Security Testing 35
Everything as Code 26, 41 f .
Gherkin 37
Identity & Access Management 42, 44, 52
Integrity of code 42 f .
Interactive Application Security Testing 35
Matrix communication 20
Penetration testing 38
Process tollgates 15
Red Teaming 39
Scaled Agile Framework 7, 12
Secrets 42, 44
Security champions 22 f ., 26, 34

Security coaches 21, 24 ff ., 34
Security community 25
Security incident 49
Security monitoring 47 ff .
Security Officers 21, 25
Security Operations Center 49
Security roles 21 ff .
Security Testing, automated 33
Security Testing, manual 38
Security testing tools 34
Segregation of Duties 15
Shift Left 14, 21, 22, 31, 49
Skill diversity 21
Software Development Lifecycle 8, 28, 31 ff .
Static Application Security Testing 35
Third-party libraries 34, 37
Threat Model 48
Threat modelling 27 ff .
Threat Model, central, distributed 29
Training & awareness 17 ff .
Training & awareness, concept 18
User feedback 45
Version Control System 40, 41
Vulnerability management 46

56

D
ev

Se
cO

ps
 |

In
de

x
&

 F
ur

th
er

 re
so

ur
ce

s

8 Further resources
The following is a list of resources we recommend to readers interested in knowing more
on different topics of DevSecOps:

• A Leader’s Framework for Decision Making by David J . Snowden and Mary E . Boone,
URL: hbr.org

• Accelerate: Building and Scaling High Performing Technology Organizations by
Nicole Forsgren Phd, Jez Humble, Gene Kim

• Agile Application Security by Laura Bell, Michael Brunton-Spall, Rich Smith, Jim Bird
• Building Microservices by Sam Newman,

URL: samnewman.io/books/building_microservices
• DevOps Culture (Part 1) by John Willis, URL: itrevolution.com/devops-culture-part-1
• The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in

Technology Organizations by Gene Kim, John Willis, Patrick Debois, Jez Humble,
URL: itrevolution.com/book/the-devops-handbook

• Drive by Daniel Pink . URL: danpink.com/drive
• Manifesto for Agile Software Development by Kent Beck et coll .,

URL: agilemanifesto.org
• The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win by

Gene Kim, Kevin Behr, Georg Spafford, URL: itrevolution.com/book/the-phoenix-project
• Project to Product: How to Survive and Thrive in the Age of Digital Disruption with the

Flow Framework by Mik Kersten
• Securing DevOps – Security in the cloud by Julien Vehent
• Security Champions Playbook/OWASP Wiki, URL: owasp.org
• State Of DevOps Report by Puppet + Splunk, URL: puppet.com
• Threat Modeling – Designing for Security by Adam Shostack

57

http://hbr.org
http://samnewman.io/books/building_microservices
http://itrevolution.com/devops-culture-part-1
http://itrevolution.com/book/the-devops-handbook
http://danpink.com/drive
http://agilemanifesto.org
http://itrevolution.com/book/the-phoenix-project
http://owasp.org
http://puppet.com

Notes

Swisscom Ltd
Alte Tiefenaustrasse 6
3048 Worblaufen

